{"title":"西北太平洋地转流的内李波产生","authors":"Ji Li, Zhenhua Xu, Zhanjiu Hao, Jia You, Peiwen Zhang, Baoshu Yin","doi":"10.1175/jpo-d-23-0035.1","DOIUrl":null,"url":null,"abstract":"Abstract Among the global mapping of lee wave generation, a missing piece exists in the northwestern Pacific Ocean (NPO), which features complex topographies and energetic circulations. This study applies Bell’s theory to estimate and map internal lee waves generated by geostrophic flows in the NPO using Mercator Ocean reanalysis data and the full topographic spectra obtained from the latest synthetic bathymetry product. Unlike the dominant contributions from abyssal hills in the Southern Ocean, multiple topographies, including ridges, rises, and continental margins, result in an inhomogeneous lee wave generation with multiple hotspots in the NPO. The generation rate is generally higher in the Philippine basin and lower in the central Pacific seamounts. Over ridges, the rough topography creates a high potential for triggering lee waves. Over rises and continental margins, the stronger currents at the shallow depths are favorable for lee wave generation. In the Kuroshio extension region, the rough topography and strong currents cause the strongest lee wave generation, with an energy flux reaching 100 mW m −2 . By mean–eddy decomposition, it is found that the lee wave hotspots contributed by mean flow are concentrated in specific regions, while those by geostrophic eddies are widely distributed. Geostrophic eddies are the primary contributor to lee wave generation, which account for 74.6% of the total energy transferred from geostrophic flow to lee waves. This study also reveals that tides suppress the lee wave generation by 14%, and geostrophic flow can cause an asymmetric generation of internal tides.","PeriodicalId":56115,"journal":{"name":"Journal of Physical Oceanography","volume":"52 12","pages":"0"},"PeriodicalIF":2.8000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Internal Lee Wave Generation from Geostrophic Flow in the Northwestern Pacific Ocean\",\"authors\":\"Ji Li, Zhenhua Xu, Zhanjiu Hao, Jia You, Peiwen Zhang, Baoshu Yin\",\"doi\":\"10.1175/jpo-d-23-0035.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Among the global mapping of lee wave generation, a missing piece exists in the northwestern Pacific Ocean (NPO), which features complex topographies and energetic circulations. This study applies Bell’s theory to estimate and map internal lee waves generated by geostrophic flows in the NPO using Mercator Ocean reanalysis data and the full topographic spectra obtained from the latest synthetic bathymetry product. Unlike the dominant contributions from abyssal hills in the Southern Ocean, multiple topographies, including ridges, rises, and continental margins, result in an inhomogeneous lee wave generation with multiple hotspots in the NPO. The generation rate is generally higher in the Philippine basin and lower in the central Pacific seamounts. Over ridges, the rough topography creates a high potential for triggering lee waves. Over rises and continental margins, the stronger currents at the shallow depths are favorable for lee wave generation. In the Kuroshio extension region, the rough topography and strong currents cause the strongest lee wave generation, with an energy flux reaching 100 mW m −2 . By mean–eddy decomposition, it is found that the lee wave hotspots contributed by mean flow are concentrated in specific regions, while those by geostrophic eddies are widely distributed. Geostrophic eddies are the primary contributor to lee wave generation, which account for 74.6% of the total energy transferred from geostrophic flow to lee waves. This study also reveals that tides suppress the lee wave generation by 14%, and geostrophic flow can cause an asymmetric generation of internal tides.\",\"PeriodicalId\":56115,\"journal\":{\"name\":\"Journal of Physical Oceanography\",\"volume\":\"52 12\",\"pages\":\"0\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2023-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Physical Oceanography\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1175/jpo-d-23-0035.1\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OCEANOGRAPHY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physical Oceanography","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1175/jpo-d-23-0035.1","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OCEANOGRAPHY","Score":null,"Total":0}
Internal Lee Wave Generation from Geostrophic Flow in the Northwestern Pacific Ocean
Abstract Among the global mapping of lee wave generation, a missing piece exists in the northwestern Pacific Ocean (NPO), which features complex topographies and energetic circulations. This study applies Bell’s theory to estimate and map internal lee waves generated by geostrophic flows in the NPO using Mercator Ocean reanalysis data and the full topographic spectra obtained from the latest synthetic bathymetry product. Unlike the dominant contributions from abyssal hills in the Southern Ocean, multiple topographies, including ridges, rises, and continental margins, result in an inhomogeneous lee wave generation with multiple hotspots in the NPO. The generation rate is generally higher in the Philippine basin and lower in the central Pacific seamounts. Over ridges, the rough topography creates a high potential for triggering lee waves. Over rises and continental margins, the stronger currents at the shallow depths are favorable for lee wave generation. In the Kuroshio extension region, the rough topography and strong currents cause the strongest lee wave generation, with an energy flux reaching 100 mW m −2 . By mean–eddy decomposition, it is found that the lee wave hotspots contributed by mean flow are concentrated in specific regions, while those by geostrophic eddies are widely distributed. Geostrophic eddies are the primary contributor to lee wave generation, which account for 74.6% of the total energy transferred from geostrophic flow to lee waves. This study also reveals that tides suppress the lee wave generation by 14%, and geostrophic flow can cause an asymmetric generation of internal tides.
期刊介绍:
The Journal of Physical Oceanography (JPO) (ISSN: 0022-3670; eISSN: 1520-0485) publishes research related to the physics of the ocean and to processes operating at its boundaries. Observational, theoretical, and modeling studies are all welcome, especially those that focus on elucidating specific physical processes. Papers that investigate interactions with other components of the Earth system (e.g., ocean–atmosphere, physical–biological, and physical–chemical interactions) as well as studies of other fluid systems (e.g., lakes and laboratory tanks) are also invited, as long as their focus is on understanding the ocean or its role in the Earth system.