针对AES侧信道攻击的扫描链设计以提高安全性

Pub Date : 2023-11-01 DOI:10.14429/dsj.73.18879
G. Sowmiya, S. Malarvizhi
{"title":"针对AES侧信道攻击的扫描链设计以提高安全性","authors":"G. Sowmiya, S. Malarvizhi","doi":"10.14429/dsj.73.18879","DOIUrl":null,"url":null,"abstract":"Scan chain-based attacks are side-channel attacks focusing on one of the most significant features of hardware test circuitry. A technique called Design for Testability (DfT) involves integrating certain testability components into a hardware design. However, this creates a side channel for cryptanalysis, providing crypto devices vulnerable to scan-based attacks. Advanced Encryption Standard (AES) has been proven as the most powerful and secure symmetric encryption algorithm announced by USA Government and it outperforms all other existing cryptographic algorithms. Furthermore, the on-chip implementation of private key algorithms like AES has faced scan-based side-channel attacks. With the aim of protecting the data for secure communication, a new hybrid pipelined AES algorithm with enhanced security features is implemented. This paper proposes testing an AES core with unpredictable response compaction and bit level-masking throughout the scan chain process. A bit-level scan flipflop focused on masking as a scan protection solution for secure testing. The experimental results show that the best security is provided by the randomized addition of masked scan flipflop through the scan chain and also provides minimal design difficulty and power expansion overhead with some negligible delay measures. Thus, the proposed technique outperforms the state-of-the-art LUT-based S-box and the composite sub-byte transformation model regarding throughput rate 2 times and 15 times respectively. And security measured in the avalanche effect for the sub-pipelined model has been increased up to 95 per cent with reduced computational complexity. Also, the proposed sub-pipelined S-box utilizing a composite field arithmetic scheme achieves 7 per cent area effectiveness and 2.5 times the hardware complexity compared to the LUT-based model.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design of a Scan Chain for Side Channel Attacks on AES Cryptosystem for Improved Security\",\"authors\":\"G. Sowmiya, S. Malarvizhi\",\"doi\":\"10.14429/dsj.73.18879\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Scan chain-based attacks are side-channel attacks focusing on one of the most significant features of hardware test circuitry. A technique called Design for Testability (DfT) involves integrating certain testability components into a hardware design. However, this creates a side channel for cryptanalysis, providing crypto devices vulnerable to scan-based attacks. Advanced Encryption Standard (AES) has been proven as the most powerful and secure symmetric encryption algorithm announced by USA Government and it outperforms all other existing cryptographic algorithms. Furthermore, the on-chip implementation of private key algorithms like AES has faced scan-based side-channel attacks. With the aim of protecting the data for secure communication, a new hybrid pipelined AES algorithm with enhanced security features is implemented. This paper proposes testing an AES core with unpredictable response compaction and bit level-masking throughout the scan chain process. A bit-level scan flipflop focused on masking as a scan protection solution for secure testing. The experimental results show that the best security is provided by the randomized addition of masked scan flipflop through the scan chain and also provides minimal design difficulty and power expansion overhead with some negligible delay measures. Thus, the proposed technique outperforms the state-of-the-art LUT-based S-box and the composite sub-byte transformation model regarding throughput rate 2 times and 15 times respectively. And security measured in the avalanche effect for the sub-pipelined model has been increased up to 95 per cent with reduced computational complexity. Also, the proposed sub-pipelined S-box utilizing a composite field arithmetic scheme achieves 7 per cent area effectiveness and 2.5 times the hardware complexity compared to the LUT-based model.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14429/dsj.73.18879\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14429/dsj.73.18879","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

基于扫描链的攻击是针对硬件测试电路最重要特征之一的侧信道攻击。一种称为可测试性设计(DfT)的技术涉及将某些可测试性组件集成到硬件设计中。然而,这为密码分析创建了一个侧通道,使加密设备容易受到基于扫描的攻击。高级加密标准(AES)已被证明是美国政府宣布的最强大,最安全的对称加密算法,它优于所有其他现有的加密算法。此外,像AES这样的私钥算法的片上实现面临着基于扫描的侧信道攻击。为了保护数据的安全通信,实现了一种新的混合管道AES算法,增强了算法的安全性。本文提出了在整个扫描链过程中测试具有不可预测响应压缩和位电平屏蔽的AES核。一个位级扫描触发器专注于屏蔽作为安全测试的扫描保护解决方案。实验结果表明,通过扫描链随机添加屏蔽扫描触发器可以提供最佳的安全性,并且具有最小的设计难度和功率扩展开销,并且可以忽略一些延迟措施。因此,所提出的技术在吞吐量方面分别优于最先进的基于lut的S-box和复合子字节转换模型2倍和15倍。在雪崩效应中测量的子流水线模型的安全性提高了95%,同时降低了计算复杂度。此外,与基于lut的模型相比,采用复合场算法方案的子流水线s盒实现了7%的面积效率和2.5倍的硬件复杂性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
Design of a Scan Chain for Side Channel Attacks on AES Cryptosystem for Improved Security
Scan chain-based attacks are side-channel attacks focusing on one of the most significant features of hardware test circuitry. A technique called Design for Testability (DfT) involves integrating certain testability components into a hardware design. However, this creates a side channel for cryptanalysis, providing crypto devices vulnerable to scan-based attacks. Advanced Encryption Standard (AES) has been proven as the most powerful and secure symmetric encryption algorithm announced by USA Government and it outperforms all other existing cryptographic algorithms. Furthermore, the on-chip implementation of private key algorithms like AES has faced scan-based side-channel attacks. With the aim of protecting the data for secure communication, a new hybrid pipelined AES algorithm with enhanced security features is implemented. This paper proposes testing an AES core with unpredictable response compaction and bit level-masking throughout the scan chain process. A bit-level scan flipflop focused on masking as a scan protection solution for secure testing. The experimental results show that the best security is provided by the randomized addition of masked scan flipflop through the scan chain and also provides minimal design difficulty and power expansion overhead with some negligible delay measures. Thus, the proposed technique outperforms the state-of-the-art LUT-based S-box and the composite sub-byte transformation model regarding throughput rate 2 times and 15 times respectively. And security measured in the avalanche effect for the sub-pipelined model has been increased up to 95 per cent with reduced computational complexity. Also, the proposed sub-pipelined S-box utilizing a composite field arithmetic scheme achieves 7 per cent area effectiveness and 2.5 times the hardware complexity compared to the LUT-based model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1