比例金纳米颗粒对非晶三氧化钨薄膜性能及光电效率的影响

IF 0.9 4区 材料科学 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY Journal of Ovonic Research Pub Date : 2023-11-01 DOI:10.15251/jor.2023.196.623
M. H. Mustafa, A. A. Shihab
{"title":"比例金纳米颗粒对非晶三氧化钨薄膜性能及光电效率的影响","authors":"M. H. Mustafa, A. A. Shihab","doi":"10.15251/jor.2023.196.623","DOIUrl":null,"url":null,"abstract":"At a substrate temperature of 320 o C, a chemical spray pyrolysis approach was applied. to create tungsten oxide thin films on glass substrates with varying Au nanoparticle doping concentrations (0, 0.04 and 0.08 M) that have a thickness of roughly 250 nm. Investigated were the structural and optical characteristics. The films were amorphous to the pure films at the substrate temperature (320 °C), according to X-ray diffraction and remain so even after adding GNPs, because the WO3 structure is amorphous in all samples, whereas the cubic structure of the gold nanoparticles. The morphology of the films was examined using atomic force microscopy (AFM), which showed a decrease in the grain size of the films doped with gold compared to the thin films before the doping process. a UV-Vis spectrophotometer was used to examine the membranes' optical characteristics between the wavelengths of (300-1000) nm. was the optical energy gap of the films (3.23) eV for tungsten oxide film and decreased after adding nanoscale gold to (3.04, 2.95) eV for films doped with different proportions of Au NPs (0.04, 0.08 M), respectively. Hall testing confirms that with 8 (mM) Gold (Au) doping, WO3 material of the n type was obtained with a maximum carrier mobility of 219.92(cm2 /Vs) and conductivity of 6.52 (Ω.cm)-1 . The I-V characteristics of the photovoltaic formed under illumination were determined by measuring the incident power density (100 mW/cm2 ) at varied Au doping levels.","PeriodicalId":49156,"journal":{"name":"Journal of Ovonic Research","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of ratio gold nanoparticles on the properties and efficiency photovoltaic of thin films of amorphous tungsten trioxide\",\"authors\":\"M. H. Mustafa, A. A. Shihab\",\"doi\":\"10.15251/jor.2023.196.623\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"At a substrate temperature of 320 o C, a chemical spray pyrolysis approach was applied. to create tungsten oxide thin films on glass substrates with varying Au nanoparticle doping concentrations (0, 0.04 and 0.08 M) that have a thickness of roughly 250 nm. Investigated were the structural and optical characteristics. The films were amorphous to the pure films at the substrate temperature (320 °C), according to X-ray diffraction and remain so even after adding GNPs, because the WO3 structure is amorphous in all samples, whereas the cubic structure of the gold nanoparticles. The morphology of the films was examined using atomic force microscopy (AFM), which showed a decrease in the grain size of the films doped with gold compared to the thin films before the doping process. a UV-Vis spectrophotometer was used to examine the membranes' optical characteristics between the wavelengths of (300-1000) nm. was the optical energy gap of the films (3.23) eV for tungsten oxide film and decreased after adding nanoscale gold to (3.04, 2.95) eV for films doped with different proportions of Au NPs (0.04, 0.08 M), respectively. Hall testing confirms that with 8 (mM) Gold (Au) doping, WO3 material of the n type was obtained with a maximum carrier mobility of 219.92(cm2 /Vs) and conductivity of 6.52 (Ω.cm)-1 . The I-V characteristics of the photovoltaic formed under illumination were determined by measuring the incident power density (100 mW/cm2 ) at varied Au doping levels.\",\"PeriodicalId\":49156,\"journal\":{\"name\":\"Journal of Ovonic Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2023-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Ovonic Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15251/jor.2023.196.623\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Ovonic Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15251/jor.2023.196.623","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在基材温度为320℃的条件下,采用化学喷雾热解方法。在不同Au纳米颗粒掺杂浓度(0,0.04和0.08 M)的玻璃基板上制备氧化钨薄膜,其厚度约为250 nm。研究了其结构和光学特性。x射线衍射结果表明,在衬底温度(320℃)下,薄膜与纯薄膜相比呈非晶态,并且在加入GNPs后仍然呈非晶态,这是因为在所有样品中WO3的结构都是非晶态的,而金纳米颗粒的结构则为立方结构。用原子力显微镜(AFM)观察了薄膜的形貌,发现与掺杂前相比,掺杂金的薄膜的晶粒尺寸减小了。用紫外-可见分光光度计测定膜在(300-1000)nm波长范围内的光学特性。为氧化钨薄膜的光能隙(3.23)eV,对于不同比例Au NPs (0.04, 0.08 M)掺杂的薄膜,加入纳米级金至(3.04,2.95)eV后,光能隙减小。Hall测试证实,掺杂8 (mM) Gold (Au)后,得到n型WO3材料,最大载流子迁移率为219.92(cm2 /Vs),电导率为6.52 (Ω.cm)-1。通过测量不同Au掺杂水平下的入射功率密度(100 mW/cm2),确定了在光照下形成的光伏材料的I-V特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Effect of ratio gold nanoparticles on the properties and efficiency photovoltaic of thin films of amorphous tungsten trioxide
At a substrate temperature of 320 o C, a chemical spray pyrolysis approach was applied. to create tungsten oxide thin films on glass substrates with varying Au nanoparticle doping concentrations (0, 0.04 and 0.08 M) that have a thickness of roughly 250 nm. Investigated were the structural and optical characteristics. The films were amorphous to the pure films at the substrate temperature (320 °C), according to X-ray diffraction and remain so even after adding GNPs, because the WO3 structure is amorphous in all samples, whereas the cubic structure of the gold nanoparticles. The morphology of the films was examined using atomic force microscopy (AFM), which showed a decrease in the grain size of the films doped with gold compared to the thin films before the doping process. a UV-Vis spectrophotometer was used to examine the membranes' optical characteristics between the wavelengths of (300-1000) nm. was the optical energy gap of the films (3.23) eV for tungsten oxide film and decreased after adding nanoscale gold to (3.04, 2.95) eV for films doped with different proportions of Au NPs (0.04, 0.08 M), respectively. Hall testing confirms that with 8 (mM) Gold (Au) doping, WO3 material of the n type was obtained with a maximum carrier mobility of 219.92(cm2 /Vs) and conductivity of 6.52 (Ω.cm)-1 . The I-V characteristics of the photovoltaic formed under illumination were determined by measuring the incident power density (100 mW/cm2 ) at varied Au doping levels.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Ovonic Research
Journal of Ovonic Research MATERIALS SCIENCE, MULTIDISCIPLINARY-PHYSICS, APPLIED
CiteScore
1.90
自引率
20.00%
发文量
77
期刊介绍: Journal of Ovonic Research (JOR) appears with six issues per year and is open to the reviews, papers, short communications and breakings news inserted as Short Notes, in the field of ovonic (mainly chalcogenide) materials for memories, smart materials based on ovonic materials (combinations of various elements including chalcogenides), materials with nano-structures based on various alloys, as well as semiconducting materials and alloys based on amorphous silicon, germanium, carbon in their various nanostructured forms, either simple or doped/alloyed with hydrogen, fluorine, chlorine and other elements of high interest for applications in electronics and optoelectronics. Papers on minerals with possible applications in electronics and optoelectronics are encouraged.
期刊最新文献
Simulation of sodium diborate glass containing lead and cadmium oxides for radiation shielding applications Effects of composition on the structure, thermal and some physical characteristics of Bi2O3-B2O3-ZnO-SiO2 glasse Novel synthesis and spectroscopic analysis of gallium oxide doped zinc phosphate glass Synthesis of zinc oxide thin films by spray pyrolysis technique Physical and sensing characterization of nanostructured Ag doped TiO2 thin films
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1