桥墩上半锥木屑堆塞水动力场试验研究

IF 1.7 3区 工程技术 Q3 ENGINEERING, CIVIL Journal of Hydraulic Research Pub Date : 2023-11-06 DOI:10.1080/00221686.2023.2259859
Wenjun Zhang, Colin D. Rennie, Ioan Nistor
{"title":"桥墩上半锥木屑堆塞水动力场试验研究","authors":"Wenjun Zhang, Colin D. Rennie, Ioan Nistor","doi":"10.1080/00221686.2023.2259859","DOIUrl":null,"url":null,"abstract":"ABSTRACTA debris jam causes extra load and associated scour on a bridge pier, and this significantly affects the safety of the bridge. Laboratory experiments were conducted to investigate the flow field around half-cone shaped debris jams of equal size, following the geometry in previous field studies, but with different surface roughness. The debris jams were assembled using dowels or by 3D printing. The results indicate three zones were observed behind the debris jam: the wake dead zone, high shear transition zone, and accelerated high-speed zone. A debris jam enlarges the dead zone while Reynolds shear stress was greatest in the transition zone for all debris jam cases. Additionally, the drag coefficient of debris jams built by dowels was greater compared with the 3D-printed debris jam, attributed to the debris jam roughness. In summary, debris jams form the wake dead zone behind the pier, increase downward flow in front of the pier, and enhance flow acceleration around the pier, highlighting the potential hazards to bridge safety.Keywords: Debris jamdrag coefficientflow fieldReynolds shearsingle pier Supplemental dataSupplemental data for this article can be accessed online at https://doi.org/10.1080/00221686.2023.2259859.Disclosure statementNo potential conflict of interest was reported by the author(s).Additional informationFundingThe first author would thank the joint financial support provided by the China Scholarship Council and the University of Ottawa. Additional fundings from the NSERC Discovery grants held by Colin Rennie and Ioan Nistor are also acknowledged.","PeriodicalId":54802,"journal":{"name":"Journal of Hydraulic Research","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experimental investigation of the hydrodynamic field around a half-cone woody debris jam on a bridge pier\",\"authors\":\"Wenjun Zhang, Colin D. Rennie, Ioan Nistor\",\"doi\":\"10.1080/00221686.2023.2259859\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACTA debris jam causes extra load and associated scour on a bridge pier, and this significantly affects the safety of the bridge. Laboratory experiments were conducted to investigate the flow field around half-cone shaped debris jams of equal size, following the geometry in previous field studies, but with different surface roughness. The debris jams were assembled using dowels or by 3D printing. The results indicate three zones were observed behind the debris jam: the wake dead zone, high shear transition zone, and accelerated high-speed zone. A debris jam enlarges the dead zone while Reynolds shear stress was greatest in the transition zone for all debris jam cases. Additionally, the drag coefficient of debris jams built by dowels was greater compared with the 3D-printed debris jam, attributed to the debris jam roughness. In summary, debris jams form the wake dead zone behind the pier, increase downward flow in front of the pier, and enhance flow acceleration around the pier, highlighting the potential hazards to bridge safety.Keywords: Debris jamdrag coefficientflow fieldReynolds shearsingle pier Supplemental dataSupplemental data for this article can be accessed online at https://doi.org/10.1080/00221686.2023.2259859.Disclosure statementNo potential conflict of interest was reported by the author(s).Additional informationFundingThe first author would thank the joint financial support provided by the China Scholarship Council and the University of Ottawa. Additional fundings from the NSERC Discovery grants held by Colin Rennie and Ioan Nistor are also acknowledged.\",\"PeriodicalId\":54802,\"journal\":{\"name\":\"Journal of Hydraulic Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2023-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Hydraulic Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/00221686.2023.2259859\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hydraulic Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/00221686.2023.2259859","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

摘要

摘要碎屑淤塞会对桥墩产生额外的荷载和冲刷,严重影响桥梁的安全。在室内实验中,研究了大小相同的半锥状碎屑堵塞周围的流场,遵循了先前现场研究的几何形状,但表面粗糙度不同。碎片堵塞是用销子或3D打印组装的。结果表明:岩屑堵塞后存在三个区域:尾流死区、高剪切过渡区和高速加速区。岩屑堵塞使死区增大,而在过渡区雷诺数剪应力最大。此外,由于碎片堵塞的粗糙度,与3d打印的碎片堵塞相比,用凿子制造的碎片堵塞的阻力系数更大。综上所述,泥石流淤塞在桥墩后方形成尾流死区,增加了桥墩前方的向下流动,增强了桥墩周围的水流加速度,凸显了对桥梁安全的潜在危害。关键词:碎片堵塞系数流场雷诺兹剪切单墩补充数据本文补充数据可在https://doi.org/10.1080/00221686.2023.2259859.Disclosure网站上获取声明作者未报告潜在的利益冲突。第一作者感谢中国留学基金委和渥太华大学提供的联合资金支持。由Colin Rennie和Ioan Nistor持有的NSERC发现补助金的额外资金也得到了承认。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Experimental investigation of the hydrodynamic field around a half-cone woody debris jam on a bridge pier
ABSTRACTA debris jam causes extra load and associated scour on a bridge pier, and this significantly affects the safety of the bridge. Laboratory experiments were conducted to investigate the flow field around half-cone shaped debris jams of equal size, following the geometry in previous field studies, but with different surface roughness. The debris jams were assembled using dowels or by 3D printing. The results indicate three zones were observed behind the debris jam: the wake dead zone, high shear transition zone, and accelerated high-speed zone. A debris jam enlarges the dead zone while Reynolds shear stress was greatest in the transition zone for all debris jam cases. Additionally, the drag coefficient of debris jams built by dowels was greater compared with the 3D-printed debris jam, attributed to the debris jam roughness. In summary, debris jams form the wake dead zone behind the pier, increase downward flow in front of the pier, and enhance flow acceleration around the pier, highlighting the potential hazards to bridge safety.Keywords: Debris jamdrag coefficientflow fieldReynolds shearsingle pier Supplemental dataSupplemental data for this article can be accessed online at https://doi.org/10.1080/00221686.2023.2259859.Disclosure statementNo potential conflict of interest was reported by the author(s).Additional informationFundingThe first author would thank the joint financial support provided by the China Scholarship Council and the University of Ottawa. Additional fundings from the NSERC Discovery grants held by Colin Rennie and Ioan Nistor are also acknowledged.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Hydraulic Research
Journal of Hydraulic Research 工程技术-工程:土木
CiteScore
4.90
自引率
4.30%
发文量
55
审稿时长
6.6 months
期刊介绍: The Journal of Hydraulic Research (JHR) is the flagship journal of the International Association for Hydro-Environment Engineering and Research (IAHR). It publishes research papers in theoretical, experimental and computational hydraulics and fluid mechanics, particularly relating to rivers, lakes, estuaries, coasts, constructed waterways, and some internal flows such as pipe flows. To reflect current tendencies in water research, outcomes of interdisciplinary hydro-environment studies with a strong fluid mechanical component are especially invited. Although the preference is given to the fundamental issues, the papers focusing on important unconventional or emerging applications of broad interest are also welcome.
期刊最新文献
Air–water flows Lattice Boltzmann simulation of plunging breakers Simulation of a Pelton turbine using the moving particle simulation method: application to two challenging situations Flexural-gravity wave forces acting on a submerged spherical object over a flexible sea bed A finite volume model for maintaining stationarity and reducing spurious oscillations in simulations of sewer system filling and emptying
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1