{"title":"OFP铜蠕变松弛变形的晶体塑性模型","authors":"Tom. Andersson, Matti. Lindroos, Rami. Pohja, Abhishek. Biswas, Supriya. Nandy, Janne. Pakarinen, Juhani. Rantala","doi":"10.1080/09603409.2023.2278232","DOIUrl":null,"url":null,"abstract":"We demonstrate a dislocation density-based crystal plasticity (CP) model approach for simulating mesoscale deformation and damage. The existing CP framework is extended to be compatible with the oxygen-free phosphorous copper microstructure that is the focus of this study. The key aim is to introduce relevant plastic deformation mechanisms and to develop a failure model capable of depicting creep damage in the material. The effect of local variations in material is evaluated, and the model response is compared with experiments and characterisation. The basis of this work is CP material modelling, including grain orientation and size, obtained using electron backscatter diffraction and experimental test data of real relaxation test specimens. This will yield a realistic description of texture and grain shape and, ultimately, accurate stress–strain response at the microstructural level for further evaluation of performance with respect to material creep(−fatigue) damage.","PeriodicalId":49877,"journal":{"name":"Materials at High Temperatures","volume":"7 1","pages":"0"},"PeriodicalIF":1.0000,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Crystal plasticity model for creep and relaxation deformation of OFP copper\",\"authors\":\"Tom. Andersson, Matti. Lindroos, Rami. Pohja, Abhishek. Biswas, Supriya. Nandy, Janne. Pakarinen, Juhani. Rantala\",\"doi\":\"10.1080/09603409.2023.2278232\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We demonstrate a dislocation density-based crystal plasticity (CP) model approach for simulating mesoscale deformation and damage. The existing CP framework is extended to be compatible with the oxygen-free phosphorous copper microstructure that is the focus of this study. The key aim is to introduce relevant plastic deformation mechanisms and to develop a failure model capable of depicting creep damage in the material. The effect of local variations in material is evaluated, and the model response is compared with experiments and characterisation. The basis of this work is CP material modelling, including grain orientation and size, obtained using electron backscatter diffraction and experimental test data of real relaxation test specimens. This will yield a realistic description of texture and grain shape and, ultimately, accurate stress–strain response at the microstructural level for further evaluation of performance with respect to material creep(−fatigue) damage.\",\"PeriodicalId\":49877,\"journal\":{\"name\":\"Materials at High Temperatures\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials at High Temperatures\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/09603409.2023.2278232\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials at High Temperatures","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/09603409.2023.2278232","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Crystal plasticity model for creep and relaxation deformation of OFP copper
We demonstrate a dislocation density-based crystal plasticity (CP) model approach for simulating mesoscale deformation and damage. The existing CP framework is extended to be compatible with the oxygen-free phosphorous copper microstructure that is the focus of this study. The key aim is to introduce relevant plastic deformation mechanisms and to develop a failure model capable of depicting creep damage in the material. The effect of local variations in material is evaluated, and the model response is compared with experiments and characterisation. The basis of this work is CP material modelling, including grain orientation and size, obtained using electron backscatter diffraction and experimental test data of real relaxation test specimens. This will yield a realistic description of texture and grain shape and, ultimately, accurate stress–strain response at the microstructural level for further evaluation of performance with respect to material creep(−fatigue) damage.
期刊介绍:
Materials at High Temperatures welcomes contributions relating to high temperature applications in the energy generation, aerospace, chemical and process industries. The effects of high temperatures and extreme environments on the corrosion and oxidation, fatigue, creep, strength and wear of metallic alloys, ceramics, intermetallics, and refractory and composite materials relative to these industries are covered.
Papers on the modelling of behaviour and life prediction are also welcome, provided these are validated by experimental data and explicitly linked to actual or potential applications. Contributions addressing the needs of designers and engineers (e.g. standards and codes of practice) relative to the areas of interest of this journal also fall within the scope. The term ''high temperatures'' refers to the subsequent temperatures of application and not, for example, to those of processing itself.
Materials at High Temperatures publishes regular thematic issues on topics of current interest. Proposals for issues are welcomed; please contact one of the Editors with details.