Shijiao Li, Kai Han, Chenyang Li, Haoxing Cao, Kaixin Tan, Jianquan Jing, Fubing Gao, Chongwei An, Bidong Wu
{"title":"小临界尺寸PVA/PF/CL-20爆炸油墨设计及微尺寸爆轰性能研究","authors":"Shijiao Li, Kai Han, Chenyang Li, Haoxing Cao, Kaixin Tan, Jianquan Jing, Fubing Gao, Chongwei An, Bidong Wu","doi":"10.1080/07370652.2023.2275201","DOIUrl":null,"url":null,"abstract":"ABSTRACTUsing 3D direct writing technology, a small critical size explosive ink formula was designed using polyvinyl alcohol (PVA) aqueous solution and phenolic resin (PF) ethanol solution as a two-component bonding system, and CL-20 as the main explosive. In particular, we investigated the influence of the CL-20 solid content on the micro-size detonation performance. Preliminary research shows that when the content of the main explosive in the explosive ink is less than 92%, the detonation velocity increases with the increase of the content, and the detonation critical size decreases with the increase of the content. The micromorphology, molding density, explosive crystal form, mechanical sensitivity, thermal stability and detonation corner of the molded samples were tested and characterized. The results show that the internal particle distribution of the printed molded sample is uniform, without cracks and fractures, the crystal form remains ε-type, the mechanical sensitivity and thermal stability are reduced, and the detonation velocity after molding with 92% explosive ink reaches 7281m·s-1, which is critical The detonation size is 1×0.027mm, and the detonation angle can reach up to 160°, showing excellent micro-size detonation performance. KEYWORDS: CL-20detonation performancedirect writingexplosive inkmicro-size Disclosure statementNo potential conflict of interest was reported by the author(s).","PeriodicalId":15754,"journal":{"name":"Journal of Energetic Materials","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design of PVA/PF/CL-20 explosive ink with small critical size and research on micro-sized detonation performance\",\"authors\":\"Shijiao Li, Kai Han, Chenyang Li, Haoxing Cao, Kaixin Tan, Jianquan Jing, Fubing Gao, Chongwei An, Bidong Wu\",\"doi\":\"10.1080/07370652.2023.2275201\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACTUsing 3D direct writing technology, a small critical size explosive ink formula was designed using polyvinyl alcohol (PVA) aqueous solution and phenolic resin (PF) ethanol solution as a two-component bonding system, and CL-20 as the main explosive. In particular, we investigated the influence of the CL-20 solid content on the micro-size detonation performance. Preliminary research shows that when the content of the main explosive in the explosive ink is less than 92%, the detonation velocity increases with the increase of the content, and the detonation critical size decreases with the increase of the content. The micromorphology, molding density, explosive crystal form, mechanical sensitivity, thermal stability and detonation corner of the molded samples were tested and characterized. The results show that the internal particle distribution of the printed molded sample is uniform, without cracks and fractures, the crystal form remains ε-type, the mechanical sensitivity and thermal stability are reduced, and the detonation velocity after molding with 92% explosive ink reaches 7281m·s-1, which is critical The detonation size is 1×0.027mm, and the detonation angle can reach up to 160°, showing excellent micro-size detonation performance. KEYWORDS: CL-20detonation performancedirect writingexplosive inkmicro-size Disclosure statementNo potential conflict of interest was reported by the author(s).\",\"PeriodicalId\":15754,\"journal\":{\"name\":\"Journal of Energetic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2023-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Energetic Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/07370652.2023.2275201\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Energetic Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/07370652.2023.2275201","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
Design of PVA/PF/CL-20 explosive ink with small critical size and research on micro-sized detonation performance
ABSTRACTUsing 3D direct writing technology, a small critical size explosive ink formula was designed using polyvinyl alcohol (PVA) aqueous solution and phenolic resin (PF) ethanol solution as a two-component bonding system, and CL-20 as the main explosive. In particular, we investigated the influence of the CL-20 solid content on the micro-size detonation performance. Preliminary research shows that when the content of the main explosive in the explosive ink is less than 92%, the detonation velocity increases with the increase of the content, and the detonation critical size decreases with the increase of the content. The micromorphology, molding density, explosive crystal form, mechanical sensitivity, thermal stability and detonation corner of the molded samples were tested and characterized. The results show that the internal particle distribution of the printed molded sample is uniform, without cracks and fractures, the crystal form remains ε-type, the mechanical sensitivity and thermal stability are reduced, and the detonation velocity after molding with 92% explosive ink reaches 7281m·s-1, which is critical The detonation size is 1×0.027mm, and the detonation angle can reach up to 160°, showing excellent micro-size detonation performance. KEYWORDS: CL-20detonation performancedirect writingexplosive inkmicro-size Disclosure statementNo potential conflict of interest was reported by the author(s).
期刊介绍:
The Journal of Energetic Materials fills the need for an international forum of scientific and technical interchange in the disciplines of explosives, propellants, and pyrotechnics. It is a refereed publication which is published quarterly. Molecular orbital calculations, synthetic and analytical chemistry, formulation, ignition and detonation properties, thermal decomposition, hazards testing, biotechnology, and toxicological and environmental aspects of energetic materials production are appropriate subjects for articles submitted to the Journal.