应用VaporGrip技术对XtendiMax除草剂除草效果的调查研究

IF 1.3 3区 农林科学 Q3 AGRONOMY Weed Technology Pub Date : 2023-11-06 DOI:10.1017/wet.2023.83
Aruna Varanasi, Daljit Singh, Jenny Krebel, Jeffrey Herrmann, John Willis, Greg Elmore, Joshua Fischer, Ty Witten, Graham Head, Chandrashekar Aradhya
{"title":"应用VaporGrip技术对XtendiMax除草剂除草效果的调查研究","authors":"Aruna Varanasi, Daljit Singh, Jenny Krebel, Jeffrey Herrmann, John Willis, Greg Elmore, Joshua Fischer, Ty Witten, Graham Head, Chandrashekar Aradhya","doi":"10.1017/wet.2023.83","DOIUrl":null,"url":null,"abstract":"Abstract Herbicide resistance in weeds significantly threatens crop production in the United States. The introduction of dicamba-resistant soybean and cotton stacked with other herbicide tolerance traits has provided farmers with the flexibility to use multiple herbicide options to diversify their weed management practices and delay resistance evolution. XtendiMax ® herbicide with VaporGrip ® Technology is a dicamba formulation registered for use in dicamba-resistant soybean and cotton by the United States Environmental Protection Agency (US-EPA). One of the terms of its registration includes evaluating inquiries on reduced weed control efficacy by growers or users of XtendiMax for suspected weed resistance. A total of 3555 product performance inquiries (PPIs) were received from 2018 to 2021 regarding reduced weed control efficacy by dicamba. Following Norsworthy criteria recommended by US-EPA, for screening of suspected resistance in the field, a total of 103 weed accessions from sixty-three counties in 13 states were collected for greenhouse testing over those 4 years. Collection of weed accession(s) for greenhouse testing was made only in states where resistance to dicamba was not yet confirmed in the weed species under investigation. The accessions, which consisted primarily of waterhemp and Palmer amaranth, were treated with dicamba at 560g ae ha -1 and 1120g ae ha -1 rates. All weed accessions except for an accession each of Palmer amaranth and waterhemp, were controlled ≥90% by dicamba at 21 days after treatment in the greenhouse.","PeriodicalId":23710,"journal":{"name":"Weed Technology","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigation of inquiries on weed control efficacy of XtendiMax<sup>®</sup> herbicide with VaporGrip<sup>®</sup> technology\",\"authors\":\"Aruna Varanasi, Daljit Singh, Jenny Krebel, Jeffrey Herrmann, John Willis, Greg Elmore, Joshua Fischer, Ty Witten, Graham Head, Chandrashekar Aradhya\",\"doi\":\"10.1017/wet.2023.83\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Herbicide resistance in weeds significantly threatens crop production in the United States. The introduction of dicamba-resistant soybean and cotton stacked with other herbicide tolerance traits has provided farmers with the flexibility to use multiple herbicide options to diversify their weed management practices and delay resistance evolution. XtendiMax ® herbicide with VaporGrip ® Technology is a dicamba formulation registered for use in dicamba-resistant soybean and cotton by the United States Environmental Protection Agency (US-EPA). One of the terms of its registration includes evaluating inquiries on reduced weed control efficacy by growers or users of XtendiMax for suspected weed resistance. A total of 3555 product performance inquiries (PPIs) were received from 2018 to 2021 regarding reduced weed control efficacy by dicamba. Following Norsworthy criteria recommended by US-EPA, for screening of suspected resistance in the field, a total of 103 weed accessions from sixty-three counties in 13 states were collected for greenhouse testing over those 4 years. Collection of weed accession(s) for greenhouse testing was made only in states where resistance to dicamba was not yet confirmed in the weed species under investigation. The accessions, which consisted primarily of waterhemp and Palmer amaranth, were treated with dicamba at 560g ae ha -1 and 1120g ae ha -1 rates. All weed accessions except for an accession each of Palmer amaranth and waterhemp, were controlled ≥90% by dicamba at 21 days after treatment in the greenhouse.\",\"PeriodicalId\":23710,\"journal\":{\"name\":\"Weed Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2023-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Weed Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1017/wet.2023.83\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"AGRONOMY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Weed Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/wet.2023.83","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0

摘要

摘要杂草的抗除草剂性严重威胁着美国的作物生产。抗麦草畏的大豆和棉花的引入,加上其他抗除草剂特性,为农民提供了使用多种除草剂的灵活性,使他们的杂草管理方法多样化,并延缓抗性进化。采用VaporGrip®技术的XtendiMax®除草剂是一种麦草畏制剂,经美国环境保护署(US-EPA)注册,用于抗麦草畏大豆和棉花。其注册的条款之一包括评估种植者或XtendiMax使用者因怀疑杂草抗性而对杂草控制效果下降的询问。从2018年到2021年,共收到3555份关于麦草畏控制杂草效果下降的产品性能咨询(ppi)。根据美国环境保护署推荐的诺斯沃西标准,在田间筛选疑似抗性,在这4年中,从13个州的63个县收集了103种杂草进行温室试验。收集用于温室试验的杂草品种只在尚未证实所调查的杂草品种对麦草畏具有抗性的州进行。麦草畏分别以560克/公顷-1和1120克/公顷-1的剂量处理了主要由水麻和苋菜组成的材料。除苋菜和水麻各1株外,所有杂草在温室处理21 d时均被麦草畏控制≥90%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Investigation of inquiries on weed control efficacy of XtendiMax® herbicide with VaporGrip® technology
Abstract Herbicide resistance in weeds significantly threatens crop production in the United States. The introduction of dicamba-resistant soybean and cotton stacked with other herbicide tolerance traits has provided farmers with the flexibility to use multiple herbicide options to diversify their weed management practices and delay resistance evolution. XtendiMax ® herbicide with VaporGrip ® Technology is a dicamba formulation registered for use in dicamba-resistant soybean and cotton by the United States Environmental Protection Agency (US-EPA). One of the terms of its registration includes evaluating inquiries on reduced weed control efficacy by growers or users of XtendiMax for suspected weed resistance. A total of 3555 product performance inquiries (PPIs) were received from 2018 to 2021 regarding reduced weed control efficacy by dicamba. Following Norsworthy criteria recommended by US-EPA, for screening of suspected resistance in the field, a total of 103 weed accessions from sixty-three counties in 13 states were collected for greenhouse testing over those 4 years. Collection of weed accession(s) for greenhouse testing was made only in states where resistance to dicamba was not yet confirmed in the weed species under investigation. The accessions, which consisted primarily of waterhemp and Palmer amaranth, were treated with dicamba at 560g ae ha -1 and 1120g ae ha -1 rates. All weed accessions except for an accession each of Palmer amaranth and waterhemp, were controlled ≥90% by dicamba at 21 days after treatment in the greenhouse.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Weed Technology
Weed Technology 农林科学-农艺学
CiteScore
2.90
自引率
21.40%
发文量
89
审稿时长
12-24 weeks
期刊介绍: Weed Technology publishes original research and scholarship in the form of peer-reviewed articles focused on understanding how weeds are managed. The journal focuses on: - Applied aspects concerning the management of weeds in agricultural systems - Herbicides used to manage undesired vegetation, weed biology and control - Weed/crop management systems - Reports of new weed problems -New technologies for weed management and special articles emphasizing technology transfer to improve weed control -Articles dealing with plant growth regulators and management of undesired plant growth may also be accepted, provided there is clear relevance to weed science technology, e.g., turfgrass or woody plant management along rights-of-way, vegetation management in forest, aquatic, or other non-crop situations. -Surveys, education, and extension topics related to weeds will also be considered
期刊最新文献
Impact of reduced rates of tiafenacil at vegetative growth stages on rice growth and yield Biologically effective dose of diflufenican applied preemergence for the control of multiple herbicide-resistant waterhemp in corn Target site mechanism confers resistance pattern of ACCase-inhibitors in bearded sprangletop (Leptochloa fusca ssp. fascicularis) from California Development and Validation of Avena Integrated Management (AIM): A Bioeconomic Decision Support Tool for Wild Oat Management in Australian Grain Production Systems Grain Sorghum Response to Simulated Fomesafen and Terbacil Carryover from Watermelons in Georgia
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1