{"title":"基于多要素方法的洪水脆弱性指数研究","authors":"","doi":"10.24425/jwld.2021.138181","DOIUrl":null,"url":null,"abstract":": The problem of flood vulnerability has been reviewed in several studies, however, the reviews focused exclusively either on the social or on the physical component of the problem. The components of flood vulnerability are interdependent and each of them makes an equally important contribution to the flood vulnerability index. This study identifies and evaluates the integrated flood vulnerability index ( FVI ) of an area by considering its multiple components (social, economic, and environmental). The Analytic Hierarchy Process (AHP) method was applied to evaluate the weight of each component. The evaluation was based on the judgements of experts working at local government policy-making agencies. The input data for the AHP were acquired through a questionnaire survey. Eleven indicators that delivered significant results were then selected. The FVI results show high flood vulnerability at the local scale. The FVI provides the basis for the identification of villages with high vulnerability indices. The results provide essential information about pluvial flood vulnerability at the local scale, about the area with the highest vulnerability index, and the most vulnerable villages. The results also show that the components that have a significant impact on the flood vulnerability index include environmental components (43.4%), social components (28.5%), and physical components (28.1%).","PeriodicalId":39224,"journal":{"name":"Journal of Water and Land Development","volume":"1988 12","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Development of the flood vulnerability index using a multi-element approach\",\"authors\":\"\",\"doi\":\"10.24425/jwld.2021.138181\",\"DOIUrl\":null,\"url\":null,\"abstract\":\": The problem of flood vulnerability has been reviewed in several studies, however, the reviews focused exclusively either on the social or on the physical component of the problem. The components of flood vulnerability are interdependent and each of them makes an equally important contribution to the flood vulnerability index. This study identifies and evaluates the integrated flood vulnerability index ( FVI ) of an area by considering its multiple components (social, economic, and environmental). The Analytic Hierarchy Process (AHP) method was applied to evaluate the weight of each component. The evaluation was based on the judgements of experts working at local government policy-making agencies. The input data for the AHP were acquired through a questionnaire survey. Eleven indicators that delivered significant results were then selected. The FVI results show high flood vulnerability at the local scale. The FVI provides the basis for the identification of villages with high vulnerability indices. The results provide essential information about pluvial flood vulnerability at the local scale, about the area with the highest vulnerability index, and the most vulnerable villages. The results also show that the components that have a significant impact on the flood vulnerability index include environmental components (43.4%), social components (28.5%), and physical components (28.1%).\",\"PeriodicalId\":39224,\"journal\":{\"name\":\"Journal of Water and Land Development\",\"volume\":\"1988 12\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Water and Land Development\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24425/jwld.2021.138181\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Social Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Water and Land Development","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24425/jwld.2021.138181","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Social Sciences","Score":null,"Total":0}
Development of the flood vulnerability index using a multi-element approach
: The problem of flood vulnerability has been reviewed in several studies, however, the reviews focused exclusively either on the social or on the physical component of the problem. The components of flood vulnerability are interdependent and each of them makes an equally important contribution to the flood vulnerability index. This study identifies and evaluates the integrated flood vulnerability index ( FVI ) of an area by considering its multiple components (social, economic, and environmental). The Analytic Hierarchy Process (AHP) method was applied to evaluate the weight of each component. The evaluation was based on the judgements of experts working at local government policy-making agencies. The input data for the AHP were acquired through a questionnaire survey. Eleven indicators that delivered significant results were then selected. The FVI results show high flood vulnerability at the local scale. The FVI provides the basis for the identification of villages with high vulnerability indices. The results provide essential information about pluvial flood vulnerability at the local scale, about the area with the highest vulnerability index, and the most vulnerable villages. The results also show that the components that have a significant impact on the flood vulnerability index include environmental components (43.4%), social components (28.5%), and physical components (28.1%).
期刊介绍:
Journal of Water and Land Development - is a peer reviewed research journal published in English. Journal has been published continually since 1998. From 2013, the journal is published quarterly in the spring, summer, autumn, and winter. In 2011 and 2012 the journal was published twice a year, and between 1998 and 2010 it was published as a yearbook. . Papers may report the results of experiments, theoretical analyses, design of machines and mechanization systems, processes or processing methods, new materials, new measurements methods or new ideas in information technology. Topics: engineering and development of the agricultural environment, water managment in rural areas and protection of water resources, natural and economic functions of grassland.