Małgorzata Hawrot-Paw, Adam Koniuszy, Grzegorz Zając, Joanna Szyszlak-Bargłowicz, Julia Jaklewicz
{"title":"微生物糖化和发酵过程中秸秆生产第二代生物乙醇的研究","authors":"Małgorzata Hawrot-Paw, Adam Koniuszy, Grzegorz Zając, Joanna Szyszlak-Bargłowicz, Julia Jaklewicz","doi":"10.24425/aep.2020.132525","DOIUrl":null,"url":null,"abstract":": The aim of the study was to evaluate the biochemical possibilities of converting waste lignocellulosic biomass to second generation bioethanol. Three substrates were used in the research: barley straw, rye straw and triticale straw. In the fi rst stage of the research bacterial strains capable of converting waste biomass to produce sugars used to produce energy-useful ethanol were selected. Of the eight strains isolated the three with the highest potential were selected on the basis of activity index value. The raw materials were subjected to enzymatic hydrolysis using the simultaneous saccharifi cation and fermentation method (SSF process). Based on the conducted research, it was found that the examined waste biomass is suitable for the production of cellulosic bioethanol. As a result of distillation 10% and 15% (v/v) ethanol was obtained, depending on the strain and the type of raw material. It was demonstrated that the bacterial strain had a greater impact on the eff ectiveness of the process than the type of straw used.","PeriodicalId":48950,"journal":{"name":"Archives of Environmental Protection","volume":"617 1","pages":"0"},"PeriodicalIF":1.4000,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Production of second generation bioethanolfrom straw during simultaneous microbial saccharification and fermentation\",\"authors\":\"Małgorzata Hawrot-Paw, Adam Koniuszy, Grzegorz Zając, Joanna Szyszlak-Bargłowicz, Julia Jaklewicz\",\"doi\":\"10.24425/aep.2020.132525\",\"DOIUrl\":null,\"url\":null,\"abstract\":\": The aim of the study was to evaluate the biochemical possibilities of converting waste lignocellulosic biomass to second generation bioethanol. Three substrates were used in the research: barley straw, rye straw and triticale straw. In the fi rst stage of the research bacterial strains capable of converting waste biomass to produce sugars used to produce energy-useful ethanol were selected. Of the eight strains isolated the three with the highest potential were selected on the basis of activity index value. The raw materials were subjected to enzymatic hydrolysis using the simultaneous saccharifi cation and fermentation method (SSF process). Based on the conducted research, it was found that the examined waste biomass is suitable for the production of cellulosic bioethanol. As a result of distillation 10% and 15% (v/v) ethanol was obtained, depending on the strain and the type of raw material. It was demonstrated that the bacterial strain had a greater impact on the eff ectiveness of the process than the type of straw used.\",\"PeriodicalId\":48950,\"journal\":{\"name\":\"Archives of Environmental Protection\",\"volume\":\"617 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2023-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archives of Environmental Protection\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24425/aep.2020.132525\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of Environmental Protection","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24425/aep.2020.132525","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Production of second generation bioethanolfrom straw during simultaneous microbial saccharification and fermentation
: The aim of the study was to evaluate the biochemical possibilities of converting waste lignocellulosic biomass to second generation bioethanol. Three substrates were used in the research: barley straw, rye straw and triticale straw. In the fi rst stage of the research bacterial strains capable of converting waste biomass to produce sugars used to produce energy-useful ethanol were selected. Of the eight strains isolated the three with the highest potential were selected on the basis of activity index value. The raw materials were subjected to enzymatic hydrolysis using the simultaneous saccharifi cation and fermentation method (SSF process). Based on the conducted research, it was found that the examined waste biomass is suitable for the production of cellulosic bioethanol. As a result of distillation 10% and 15% (v/v) ethanol was obtained, depending on the strain and the type of raw material. It was demonstrated that the bacterial strain had a greater impact on the eff ectiveness of the process than the type of straw used.
期刊介绍:
Archives of Environmental Protection is the oldest Polish scientific journal of international scope that publishes articles on engineering and environmental protection. The quarterly has been published by the Institute of Environmental Engineering, Polish Academy of Sciences since 1975. The journal has served as a forum for the exchange of views and ideas among scientists. It has become part of scientific life in Poland and abroad. The quarterly publishes the results of research and scientific inquiries by best specialists hereby becoming an important pillar of science. The journal facilitates better understanding of environmental risks to humans and ecosystems and it also shows the methods for their analysis as well as trends in the search of effective solutions to minimize these risks.