{"title":"糖尿病预测使用优化技术与机器学习算法","authors":"Sanjeev Kumar, Harsh Tiwari, Mansi Jaiswal","doi":"10.1504/ijeh.2023.130515","DOIUrl":null,"url":null,"abstract":"Diabetes is one of the most severe and widespread diseases globally. It is also the cause of many ailments, including coronary artery disease, blindness, and urinary organ disorder. In this circumstance, patients must attend a diagnostic centre to obtain their reports after consultation. A range of methods is currently used to predict diabetes and diabetic-related illnesses. A diabetes forecasting model relying on machine learning recognises diabetes and provides more accurate results using several algorithms and optimisation strategies. It generates results relying on a collection of essential dataset parameters employed to train and test machine learning algorithms. Our proposed paper aims to design a system that can more accurately estimate a patient's diabetic risk level. Models are built using feature selection strategies, hyperparameter optimisation techniques, and essential classification techniques, including random forest and support vector machine. Our proposed scheme is more accurate and better than other existing diabetic-related schemes.","PeriodicalId":39775,"journal":{"name":"International Journal of Electronic Healthcare","volume":"177 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Diabetes prediction using optimisation techniques with machine learning algorithms\",\"authors\":\"Sanjeev Kumar, Harsh Tiwari, Mansi Jaiswal\",\"doi\":\"10.1504/ijeh.2023.130515\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Diabetes is one of the most severe and widespread diseases globally. It is also the cause of many ailments, including coronary artery disease, blindness, and urinary organ disorder. In this circumstance, patients must attend a diagnostic centre to obtain their reports after consultation. A range of methods is currently used to predict diabetes and diabetic-related illnesses. A diabetes forecasting model relying on machine learning recognises diabetes and provides more accurate results using several algorithms and optimisation strategies. It generates results relying on a collection of essential dataset parameters employed to train and test machine learning algorithms. Our proposed paper aims to design a system that can more accurately estimate a patient's diabetic risk level. Models are built using feature selection strategies, hyperparameter optimisation techniques, and essential classification techniques, including random forest and support vector machine. Our proposed scheme is more accurate and better than other existing diabetic-related schemes.\",\"PeriodicalId\":39775,\"journal\":{\"name\":\"International Journal of Electronic Healthcare\",\"volume\":\"177 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Electronic Healthcare\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/ijeh.2023.130515\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Electronic Healthcare","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/ijeh.2023.130515","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Medicine","Score":null,"Total":0}
Diabetes prediction using optimisation techniques with machine learning algorithms
Diabetes is one of the most severe and widespread diseases globally. It is also the cause of many ailments, including coronary artery disease, blindness, and urinary organ disorder. In this circumstance, patients must attend a diagnostic centre to obtain their reports after consultation. A range of methods is currently used to predict diabetes and diabetic-related illnesses. A diabetes forecasting model relying on machine learning recognises diabetes and provides more accurate results using several algorithms and optimisation strategies. It generates results relying on a collection of essential dataset parameters employed to train and test machine learning algorithms. Our proposed paper aims to design a system that can more accurately estimate a patient's diabetic risk level. Models are built using feature selection strategies, hyperparameter optimisation techniques, and essential classification techniques, including random forest and support vector machine. Our proposed scheme is more accurate and better than other existing diabetic-related schemes.
期刊介绍:
The IJEH is an authoritative, fully-refereed international journal which presents current practice and research in the area of e-healthcare. It is dedicated to design, development, management, implementation, technology, and application issues in e-healthcare.