Yu-Chung Huang Yu-Chung Huang, Qingyong Yang Yu-Chung Huang, Yu-Chun Huang Qingyong Yang, Jeng-Shyang Pan Yu-Chun Huang
{"title":"基于对立学习的Rafflesia优化算法在配水网络设计中的应用","authors":"Yu-Chung Huang Yu-Chung Huang, Qingyong Yang Yu-Chung Huang, Yu-Chun Huang Qingyong Yang, Jeng-Shyang Pan Yu-Chun Huang","doi":"10.53106/160792642023092405006","DOIUrl":null,"url":null,"abstract":"<p>About 70% of the total cost of the water distribution system is used in the design of water distribution network (WDN), and selecting the most suitable pipe diameter for the WDN is the main way to reduce construction costs. The Rafflesia optimization algorithm (ROA) is a novel meta-heuristic algorithm, which was proposed recently. It has the characteristics of escaping local optimal solutions and stable performance. To further increase the solution quality and convergence speed of the algorithm, the opposition-based learning strategy is adopted in this paper to initialize the ROA algorithm population (namely the OBLROA algorithm). In this paper, the two-loop pipe network is taken as an actual test case, and the OBLROA algorithm is used to design the minimum cost pipe diameter combination. The experimental results show that the OBLROA algorithm can find the lowest cost pipe diameter combination of the two-loop pipe network under the constraints of pressure and velocity. Compared with some previous research work, the OBLROA algorithm needs the least number of evaluations to find the optimal solution, showing strong competitiveness.</p> <p>&nbsp;</p>","PeriodicalId":50172,"journal":{"name":"Journal of Internet Technology","volume":"1 1","pages":"0"},"PeriodicalIF":0.9000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimization of Water Distribution Network Design Using Rafflesia Optimization Algorithm Based on Opposition-based Learning\",\"authors\":\"Yu-Chung Huang Yu-Chung Huang, Qingyong Yang Yu-Chung Huang, Yu-Chun Huang Qingyong Yang, Jeng-Shyang Pan Yu-Chun Huang\",\"doi\":\"10.53106/160792642023092405006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>About 70% of the total cost of the water distribution system is used in the design of water distribution network (WDN), and selecting the most suitable pipe diameter for the WDN is the main way to reduce construction costs. The Rafflesia optimization algorithm (ROA) is a novel meta-heuristic algorithm, which was proposed recently. It has the characteristics of escaping local optimal solutions and stable performance. To further increase the solution quality and convergence speed of the algorithm, the opposition-based learning strategy is adopted in this paper to initialize the ROA algorithm population (namely the OBLROA algorithm). In this paper, the two-loop pipe network is taken as an actual test case, and the OBLROA algorithm is used to design the minimum cost pipe diameter combination. The experimental results show that the OBLROA algorithm can find the lowest cost pipe diameter combination of the two-loop pipe network under the constraints of pressure and velocity. Compared with some previous research work, the OBLROA algorithm needs the least number of evaluations to find the optimal solution, showing strong competitiveness.</p> <p>&nbsp;</p>\",\"PeriodicalId\":50172,\"journal\":{\"name\":\"Journal of Internet Technology\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Internet Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.53106/160792642023092405006\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Internet Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.53106/160792642023092405006","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Optimization of Water Distribution Network Design Using Rafflesia Optimization Algorithm Based on Opposition-based Learning
About 70% of the total cost of the water distribution system is used in the design of water distribution network (WDN), and selecting the most suitable pipe diameter for the WDN is the main way to reduce construction costs. The Rafflesia optimization algorithm (ROA) is a novel meta-heuristic algorithm, which was proposed recently. It has the characteristics of escaping local optimal solutions and stable performance. To further increase the solution quality and convergence speed of the algorithm, the opposition-based learning strategy is adopted in this paper to initialize the ROA algorithm population (namely the OBLROA algorithm). In this paper, the two-loop pipe network is taken as an actual test case, and the OBLROA algorithm is used to design the minimum cost pipe diameter combination. The experimental results show that the OBLROA algorithm can find the lowest cost pipe diameter combination of the two-loop pipe network under the constraints of pressure and velocity. Compared with some previous research work, the OBLROA algorithm needs the least number of evaluations to find the optimal solution, showing strong competitiveness.
期刊介绍:
The Journal of Internet Technology accepts original technical articles in all disciplines of Internet Technology & Applications. Manuscripts are submitted for review with the understanding that they have not been published elsewhere.
Topics of interest to JIT include but not limited to:
Broadband Networks
Electronic service systems (Internet, Intranet, Extranet, E-Commerce, E-Business)
Network Management
Network Operating System (NOS)
Intelligent systems engineering
Government or Staff Jobs Computerization
National Information Policy
Multimedia systems
Network Behavior Modeling
Wireless/Satellite Communication
Digital Library
Distance Learning
Internet/WWW Applications
Telecommunication Networks
Security in Networks and Systems
Cloud Computing
Internet of Things (IoT)
IPv6 related topics are especially welcome.