{"title":"固定样地设计下森林清查数据的方差划分多级模型","authors":"Isa Marques, Paul F. V. Wiemann, Thomas Kneib","doi":"10.1007/s13253-023-00548-z","DOIUrl":null,"url":null,"abstract":"Abstract Forest inventories are often carried out with a particular design, consisting of a multi-level structure of observation plots spread over a larger domain and a fixed plot design of exact observation locations within these plots. Consequently, the resulting data are collected intensively within plots of equal size but with much less intensity at larger spatial scales. The resulting data are likely to be spatially correlated both within and between plots, with spatial effects extending over two different areas. However, a Gaussian process model with a standard covariance structure is generally unable to capture dependence at both fine and coarse scales of variation as well as for their interaction. In this paper, we develop a computationally feasible multi-level spatial model that accounts for dependence at multiple scales. We use a data-driven approach to determine the weight of each spatial process in the model to partition the variability of the measurements. We use simulated and German small tree inventory data to evaluate the model’s performance.Supplementary material to this paper is provided online.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Variance Partitioning Multi-level Model for Forest Inventory Data with a Fixed Plot Design\",\"authors\":\"Isa Marques, Paul F. V. Wiemann, Thomas Kneib\",\"doi\":\"10.1007/s13253-023-00548-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Forest inventories are often carried out with a particular design, consisting of a multi-level structure of observation plots spread over a larger domain and a fixed plot design of exact observation locations within these plots. Consequently, the resulting data are collected intensively within plots of equal size but with much less intensity at larger spatial scales. The resulting data are likely to be spatially correlated both within and between plots, with spatial effects extending over two different areas. However, a Gaussian process model with a standard covariance structure is generally unable to capture dependence at both fine and coarse scales of variation as well as for their interaction. In this paper, we develop a computationally feasible multi-level spatial model that accounts for dependence at multiple scales. We use a data-driven approach to determine the weight of each spatial process in the model to partition the variability of the measurements. We use simulated and German small tree inventory data to evaluate the model’s performance.Supplementary material to this paper is provided online.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-05-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s13253-023-00548-z\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s13253-023-00548-z","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
A Variance Partitioning Multi-level Model for Forest Inventory Data with a Fixed Plot Design
Abstract Forest inventories are often carried out with a particular design, consisting of a multi-level structure of observation plots spread over a larger domain and a fixed plot design of exact observation locations within these plots. Consequently, the resulting data are collected intensively within plots of equal size but with much less intensity at larger spatial scales. The resulting data are likely to be spatially correlated both within and between plots, with spatial effects extending over two different areas. However, a Gaussian process model with a standard covariance structure is generally unable to capture dependence at both fine and coarse scales of variation as well as for their interaction. In this paper, we develop a computationally feasible multi-level spatial model that accounts for dependence at multiple scales. We use a data-driven approach to determine the weight of each spatial process in the model to partition the variability of the measurements. We use simulated and German small tree inventory data to evaluate the model’s performance.Supplementary material to this paper is provided online.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.