自动驾驶的光流:应用、挑战和改进

Shihao Shen, Louis Kerofsky, Senthil Yogamani
{"title":"自动驾驶的光流:应用、挑战和改进","authors":"Shihao Shen, Louis Kerofsky, Senthil Yogamani","doi":"10.2352/ei.2023.35.16.avm-128","DOIUrl":null,"url":null,"abstract":"Estimating optical flow presents unique challenges in AV applications: large translational motion, wide variations in depth of important objects, strong lens distortion in commonly used fisheye cameras and rolling shutter artefacts in dynamic scenes. Even simple translational motion can produce complicated optical flow fields. Lack of ground truth data also creates a challenge. We evaluate recent optical flow methods on fisheye imagery found in AV applications. We explore various training techniques in challenging scenarios and domain adaptation for transferring models trained on synthetic data where ground truth is available to real-world data. We propose novel strategies that facilitate learning robust representations efficiently to address low-light degeneracies. Finally, we discuss the main challenges and open problems in this problem domain.","PeriodicalId":73514,"journal":{"name":"IS&T International Symposium on Electronic Imaging","volume":"128 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Optical flow for autonomous driving: Applications, challenges and improvements\",\"authors\":\"Shihao Shen, Louis Kerofsky, Senthil Yogamani\",\"doi\":\"10.2352/ei.2023.35.16.avm-128\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Estimating optical flow presents unique challenges in AV applications: large translational motion, wide variations in depth of important objects, strong lens distortion in commonly used fisheye cameras and rolling shutter artefacts in dynamic scenes. Even simple translational motion can produce complicated optical flow fields. Lack of ground truth data also creates a challenge. We evaluate recent optical flow methods on fisheye imagery found in AV applications. We explore various training techniques in challenging scenarios and domain adaptation for transferring models trained on synthetic data where ground truth is available to real-world data. We propose novel strategies that facilitate learning robust representations efficiently to address low-light degeneracies. Finally, we discuss the main challenges and open problems in this problem domain.\",\"PeriodicalId\":73514,\"journal\":{\"name\":\"IS&T International Symposium on Electronic Imaging\",\"volume\":\"128 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IS&T International Symposium on Electronic Imaging\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2352/ei.2023.35.16.avm-128\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IS&T International Symposium on Electronic Imaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2352/ei.2023.35.16.avm-128","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

估计光流在AV应用中提出了独特的挑战:大的平移运动,重要物体深度的广泛变化,常用鱼眼相机的强烈镜头畸变以及动态场景中的滚动快门伪影。即使是简单的平移运动也会产生复杂的光流场。地面真实数据的缺乏也带来了挑战。我们评估了最近在AV应用中发现的鱼眼图像的光流方法。我们在具有挑战性的场景和领域适应中探索各种训练技术,以转移在合成数据上训练的模型,其中地面真相可用于真实世界数据。我们提出了新的策略,促进学习鲁棒表示有效地解决弱光退化。最后,讨论了该问题领域的主要挑战和有待解决的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Optical flow for autonomous driving: Applications, challenges and improvements
Estimating optical flow presents unique challenges in AV applications: large translational motion, wide variations in depth of important objects, strong lens distortion in commonly used fisheye cameras and rolling shutter artefacts in dynamic scenes. Even simple translational motion can produce complicated optical flow fields. Lack of ground truth data also creates a challenge. We evaluate recent optical flow methods on fisheye imagery found in AV applications. We explore various training techniques in challenging scenarios and domain adaptation for transferring models trained on synthetic data where ground truth is available to real-world data. We propose novel strategies that facilitate learning robust representations efficiently to address low-light degeneracies. Finally, we discuss the main challenges and open problems in this problem domain.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Egocentric Boundaries on Distinguishing Colliding and Non-Colliding Pedestrians while Walking in a Virtual Environment. Optical flow for autonomous driving: Applications, challenges and improvements Improving the performance of web-streaming by super-resolution upscaling techniques Self-supervised visual representation learning on food images Conditional synthetic food image generation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1