Obaid Khaliq, Iftikhar Ahmad Tahiri, Haji Muhammad, Shaikh Mohiuddin, Muhammad Hashim Zuberi, Syed Tahir Ali, Kousar Yasmeen
{"title":"通过动力学参数和数字模拟技术研究了cu2+的两步电化学氧化还原机理","authors":"Obaid Khaliq, Iftikhar Ahmad Tahiri, Haji Muhammad, Shaikh Mohiuddin, Muhammad Hashim Zuberi, Syed Tahir Ali, Kousar Yasmeen","doi":"10.22581/muet1982.2304.2885","DOIUrl":null,"url":null,"abstract":"Cycle voltammetric behaviour of Cu(II)SO4 in aqueous NaCl (supporting electrolyte) has been explored in comprehensive manner. 5 mM Cu2+, 1.0 M NaCl and glass carbon (GC) reveals the optimum response. Two stage electromechanical redox EE mechanism [(Cu2+/Cu+) and (Cu+/ Cu0)] has been explored by using different theoretical and experimental methods. The mass transfer co-efficient, dimensionless parameters and heterogeneous electron transfer rate constant ( confirmed the quasi-reversible response of (Cu2+/Cu+) redox couple. The experimental Gileadi ( and simulated Digi Sim ( values found as 0.052 cm/s and 0.0012 cm/s respectively. The diffusion co-efficient (D) of (Cu2+/Cu+) redox couple computed from 9.96 X 10-6 to 4.43 X 10-6 cm2/s through different methods. The novelty of the present work is to confirm the quasi-reversible response of (Cu2+/Cu+) through obtained electrochemical and kinetic parameters by using simple, fast, and cost-effective technique.","PeriodicalId":44836,"journal":{"name":"Mehran University Research Journal of Engineering and Technology","volume":"8 1","pages":"0"},"PeriodicalIF":0.6000,"publicationDate":"2023-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Two step electrochemical redox mechanism of cu2+ through kinetic parameters and digital simulation technique\",\"authors\":\"Obaid Khaliq, Iftikhar Ahmad Tahiri, Haji Muhammad, Shaikh Mohiuddin, Muhammad Hashim Zuberi, Syed Tahir Ali, Kousar Yasmeen\",\"doi\":\"10.22581/muet1982.2304.2885\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cycle voltammetric behaviour of Cu(II)SO4 in aqueous NaCl (supporting electrolyte) has been explored in comprehensive manner. 5 mM Cu2+, 1.0 M NaCl and glass carbon (GC) reveals the optimum response. Two stage electromechanical redox EE mechanism [(Cu2+/Cu+) and (Cu+/ Cu0)] has been explored by using different theoretical and experimental methods. The mass transfer co-efficient, dimensionless parameters and heterogeneous electron transfer rate constant ( confirmed the quasi-reversible response of (Cu2+/Cu+) redox couple. The experimental Gileadi ( and simulated Digi Sim ( values found as 0.052 cm/s and 0.0012 cm/s respectively. The diffusion co-efficient (D) of (Cu2+/Cu+) redox couple computed from 9.96 X 10-6 to 4.43 X 10-6 cm2/s through different methods. The novelty of the present work is to confirm the quasi-reversible response of (Cu2+/Cu+) through obtained electrochemical and kinetic parameters by using simple, fast, and cost-effective technique.\",\"PeriodicalId\":44836,\"journal\":{\"name\":\"Mehran University Research Journal of Engineering and Technology\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-10-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mehran University Research Journal of Engineering and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22581/muet1982.2304.2885\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mehran University Research Journal of Engineering and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22581/muet1982.2304.2885","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
全面探讨了Cu(II)SO4在NaCl水溶液(支撑电解质)中的循环伏安行为。5 mM Cu2+、1.0 M NaCl和玻璃碳(GC)反应最佳。采用不同的理论和实验方法探讨了两阶段机电氧化还原EE机理[(Cu2+/Cu+)和(Cu+/ Cu0)]。传质系数、无量纲参数和非均相电子传递速率常数证实了(Cu2+/Cu+)氧化还原对的准可逆响应。实验Gileadi值和模拟Digi Sim值分别为0.052 cm/s和0.0012 cm/s。通过不同的方法计算得到(Cu2+/Cu+)氧化还原对的扩散系数D在9.96 × 10-6 ~ 4.43 × 10-6 cm2/s范围内。本研究的新颖之处在于,采用简单、快速、经济的方法,通过获得的电化学和动力学参数来确定(Cu2+/Cu+)的准可逆反应。
Two step electrochemical redox mechanism of cu2+ through kinetic parameters and digital simulation technique
Cycle voltammetric behaviour of Cu(II)SO4 in aqueous NaCl (supporting electrolyte) has been explored in comprehensive manner. 5 mM Cu2+, 1.0 M NaCl and glass carbon (GC) reveals the optimum response. Two stage electromechanical redox EE mechanism [(Cu2+/Cu+) and (Cu+/ Cu0)] has been explored by using different theoretical and experimental methods. The mass transfer co-efficient, dimensionless parameters and heterogeneous electron transfer rate constant ( confirmed the quasi-reversible response of (Cu2+/Cu+) redox couple. The experimental Gileadi ( and simulated Digi Sim ( values found as 0.052 cm/s and 0.0012 cm/s respectively. The diffusion co-efficient (D) of (Cu2+/Cu+) redox couple computed from 9.96 X 10-6 to 4.43 X 10-6 cm2/s through different methods. The novelty of the present work is to confirm the quasi-reversible response of (Cu2+/Cu+) through obtained electrochemical and kinetic parameters by using simple, fast, and cost-effective technique.