ARCHModels。[j]: Julia中ARCH模型的估计

IF 5.4 2区 计算机科学 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Journal of Statistical Software Pub Date : 2023-01-01 DOI:10.18637/jss.v107.i05
Simon A. Broda, Marc S. Paolella
{"title":"ARCHModels。[j]: Julia中ARCH模型的估计","authors":"Simon A. Broda, Marc S. Paolella","doi":"10.18637/jss.v107.i05","DOIUrl":null,"url":null,"abstract":"This paper introduces ARCHModels.jl, a package for the Julia programming language that implements a number of univariate and multivariate autoregressive conditional heteroskedasticity models. This model class is the workhorse tool for modeling the conditional volatility of financial assets. The distinguishing feature of these models is that they model the latent volatility as a (deterministic) function of past returns and volatilities. This recursive structure results in loop-heavy code which, due to its just-in-time compiler, Julia is well-equipped to handle. As such, the entire package is written in Julia, without any binary dependencies. We benchmark the performance of ARCHModels.jl against popular implementations in MATLAB, R, and Python, and illustrate its use in a detailed case study.","PeriodicalId":17237,"journal":{"name":"Journal of Statistical Software","volume":"37 1","pages":"0"},"PeriodicalIF":5.4000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"<b>ARCHModels.jl</b>: Estimating ARCH Models in <i>Julia</i>\",\"authors\":\"Simon A. Broda, Marc S. Paolella\",\"doi\":\"10.18637/jss.v107.i05\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper introduces ARCHModels.jl, a package for the Julia programming language that implements a number of univariate and multivariate autoregressive conditional heteroskedasticity models. This model class is the workhorse tool for modeling the conditional volatility of financial assets. The distinguishing feature of these models is that they model the latent volatility as a (deterministic) function of past returns and volatilities. This recursive structure results in loop-heavy code which, due to its just-in-time compiler, Julia is well-equipped to handle. As such, the entire package is written in Julia, without any binary dependencies. We benchmark the performance of ARCHModels.jl against popular implementations in MATLAB, R, and Python, and illustrate its use in a detailed case study.\",\"PeriodicalId\":17237,\"journal\":{\"name\":\"Journal of Statistical Software\",\"volume\":\"37 1\",\"pages\":\"0\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Statistical Software\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18637/jss.v107.i05\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Statistical Software","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18637/jss.v107.i05","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了ARCHModels。jl,一个用于Julia编程语言的包,实现了许多单变量和多变量自回归条件异方差模型。这个模型类是对金融资产的条件波动进行建模的主要工具。这些模型的显著特征是,它们将潜在波动率建模为过去收益和波动率的(确定性)函数。这种递归结构会导致循环繁重的代码,由于Julia的即时编译器,它可以很好地处理这些代码。因此,整个包是用Julia编写的,没有任何二进制依赖项。我们对ARCHModels的性能进行基准测试。在MATLAB, R和Python中比较流行的实现,并在详细的案例研究中说明其使用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
ARCHModels.jl: Estimating ARCH Models in Julia
This paper introduces ARCHModels.jl, a package for the Julia programming language that implements a number of univariate and multivariate autoregressive conditional heteroskedasticity models. This model class is the workhorse tool for modeling the conditional volatility of financial assets. The distinguishing feature of these models is that they model the latent volatility as a (deterministic) function of past returns and volatilities. This recursive structure results in loop-heavy code which, due to its just-in-time compiler, Julia is well-equipped to handle. As such, the entire package is written in Julia, without any binary dependencies. We benchmark the performance of ARCHModels.jl against popular implementations in MATLAB, R, and Python, and illustrate its use in a detailed case study.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Statistical Software
Journal of Statistical Software 工程技术-计算机:跨学科应用
CiteScore
10.70
自引率
1.70%
发文量
40
审稿时长
6-12 weeks
期刊介绍: The Journal of Statistical Software (JSS) publishes open-source software and corresponding reproducible articles discussing all aspects of the design, implementation, documentation, application, evaluation, comparison, maintainance and distribution of software dedicated to improvement of state-of-the-art in statistical computing in all areas of empirical research. Open-source code and articles are jointly reviewed and published in this journal and should be accessible to a broad community of practitioners, teachers, and researchers in the field of statistics.
期刊最新文献
spsurvey: Spatial Sampling Design and Analysis in R. Application of Equal Local Levels to Improve Q-Q Plot Testing Bands with R Package qqconf. Elastic Net Regularization Paths for All Generalized Linear Models. Broken Stick Model for Irregular Longitudinal Data jumpdiff: A Python Library for Statistical Inference of Jump-Diffusion Processes in Observational or Experimental Data Sets
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1