带出发的在线背包问题

Q4 Computer Science Performance Evaluation Review Pub Date : 2023-06-26 DOI:10.1145/3606376.3593576
Bo Sun, Lin Yang, Mohammad Hajiesmaili, Adam Wierman, John C.S. Lui, Don Towsley, Danny H.K. Tsang
{"title":"带出发的在线背包问题","authors":"Bo Sun, Lin Yang, Mohammad Hajiesmaili, Adam Wierman, John C.S. Lui, Don Towsley, Danny H.K. Tsang","doi":"10.1145/3606376.3593576","DOIUrl":null,"url":null,"abstract":"The online knapsack problem is a classic online resource allocation problem in networking and operations research. Its basic version studies how to pack online arriving items of different sizes and values into a capacity-limited knapsack. In this paper, we study a general version that includes item departures, while also considering multiple knapsacks and multi-dimensional item sizes. We design a threshold-based online algorithm and prove that the algorithm can achieve order-optimal competitive ratios. Beyond worst-case optimized algorithms, we also propose a data-driven online algorithm that can achieve near-optimal average performance under typical instances while guaranteeing the worst-case performance.","PeriodicalId":35745,"journal":{"name":"Performance Evaluation Review","volume":"58 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Online Knapsack Problem with Departures\",\"authors\":\"Bo Sun, Lin Yang, Mohammad Hajiesmaili, Adam Wierman, John C.S. Lui, Don Towsley, Danny H.K. Tsang\",\"doi\":\"10.1145/3606376.3593576\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The online knapsack problem is a classic online resource allocation problem in networking and operations research. Its basic version studies how to pack online arriving items of different sizes and values into a capacity-limited knapsack. In this paper, we study a general version that includes item departures, while also considering multiple knapsacks and multi-dimensional item sizes. We design a threshold-based online algorithm and prove that the algorithm can achieve order-optimal competitive ratios. Beyond worst-case optimized algorithms, we also propose a data-driven online algorithm that can achieve near-optimal average performance under typical instances while guaranteeing the worst-case performance.\",\"PeriodicalId\":35745,\"journal\":{\"name\":\"Performance Evaluation Review\",\"volume\":\"58 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Performance Evaluation Review\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3606376.3593576\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Performance Evaluation Review","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3606376.3593576","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0

摘要

在线背包问题是网络与运筹学中典型的在线资源分配问题。它的基本版本研究了如何将在线到达的不同大小和价值的物品打包到一个容量有限的背包中。在本文中,我们研究了一个包含物品偏离的通用版本,同时也考虑了多个背包和多维物品尺寸。我们设计了一种基于阈值的在线算法,并证明了该算法可以实现顺序最优竞争比。除了最坏情况优化算法之外,我们还提出了一种数据驱动的在线算法,该算法可以在保证最坏情况性能的同时,在典型实例下实现接近最优的平均性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The Online Knapsack Problem with Departures
The online knapsack problem is a classic online resource allocation problem in networking and operations research. Its basic version studies how to pack online arriving items of different sizes and values into a capacity-limited knapsack. In this paper, we study a general version that includes item departures, while also considering multiple knapsacks and multi-dimensional item sizes. We design a threshold-based online algorithm and prove that the algorithm can achieve order-optimal competitive ratios. Beyond worst-case optimized algorithms, we also propose a data-driven online algorithm that can achieve near-optimal average performance under typical instances while guaranteeing the worst-case performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Performance Evaluation Review
Performance Evaluation Review Computer Science-Computer Networks and Communications
CiteScore
1.00
自引率
0.00%
发文量
193
期刊最新文献
Exponential Tail Bounds on Queues Tackling Deployability Challenges in ML-Powered Networks GHZ distillation protocols in the presence of decoherence Markov Decision Process Framework for Control-Based Reinforcement Learning Entanglement Management through Swapping over Quantum Internets
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1