城市照明指标与夜间照度关系的实证研究

IF 0.7 4区 计算机科学 Q4 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Neural Network World Pub Date : 2023-01-01 DOI:10.14311/nnw.2023.33.021
František Kekula, Pavel Hrubeš
{"title":"城市照明指标与夜间照度关系的实证研究","authors":"František Kekula, Pavel Hrubeš","doi":"10.14311/nnw.2023.33.021","DOIUrl":null,"url":null,"abstract":"Night-time light (NTL) radiance has a great potential in analyses of dynamic changes in patterns of human activities, and socio-economic and demographic factors. However, most of those analyses are focused on factors at global scales such as the population size, gross domestic product, electric power consumption, fossil fuel carbon dioxide emission etc. In this study we investigate the relationships between three urban lighting indicators and monthly averaged NTL radiance obtained from NASA’s Black Marble monthly NTL composites for 4 study areas in the Czech Republic at local scale. The Pearson correlation analysis was used to identify a strength of the correlations between the indicators and radiance at near-nadir for two different snow conditions. The results from the correlation show that radiance has a strong positive correlation with the number of streetlighting points and their total nominal power, while for the average mast height there were observed moderate correlation coefficients. However, the areas with larger scales have higher correlation coefficients. Moreover, we found that the correlation coefficients are higher for snow-covered condition radiances. Generalized linear (GL) regression analysis was used to examine an association between the radiance and selected indicators. Owing to the excess zeros and overdispersion in the data, the zero-inflated regression performs better than the GL regression. Results from the regression analysis evince a statistically significant relationship between the radiance and selected indicators.","PeriodicalId":49765,"journal":{"name":"Neural Network World","volume":"68 1","pages":"0"},"PeriodicalIF":0.7000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An empirical study of relationships between urban lighting indicators and night-time light radiance\",\"authors\":\"František Kekula, Pavel Hrubeš\",\"doi\":\"10.14311/nnw.2023.33.021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Night-time light (NTL) radiance has a great potential in analyses of dynamic changes in patterns of human activities, and socio-economic and demographic factors. However, most of those analyses are focused on factors at global scales such as the population size, gross domestic product, electric power consumption, fossil fuel carbon dioxide emission etc. In this study we investigate the relationships between three urban lighting indicators and monthly averaged NTL radiance obtained from NASA’s Black Marble monthly NTL composites for 4 study areas in the Czech Republic at local scale. The Pearson correlation analysis was used to identify a strength of the correlations between the indicators and radiance at near-nadir for two different snow conditions. The results from the correlation show that radiance has a strong positive correlation with the number of streetlighting points and their total nominal power, while for the average mast height there were observed moderate correlation coefficients. However, the areas with larger scales have higher correlation coefficients. Moreover, we found that the correlation coefficients are higher for snow-covered condition radiances. Generalized linear (GL) regression analysis was used to examine an association between the radiance and selected indicators. Owing to the excess zeros and overdispersion in the data, the zero-inflated regression performs better than the GL regression. Results from the regression analysis evince a statistically significant relationship between the radiance and selected indicators.\",\"PeriodicalId\":49765,\"journal\":{\"name\":\"Neural Network World\",\"volume\":\"68 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neural Network World\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14311/nnw.2023.33.021\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Network World","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14311/nnw.2023.33.021","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

夜间光辐射在分析人类活动模式的动态变化以及社会经济和人口因素方面具有很大的潜力。然而,这些分析大多集中在全球范围内的因素,如人口规模、国内生产总值、电力消耗、化石燃料二氧化碳排放等。在本研究中,我们研究了三个城市照明指标与捷克共和国4个研究区域的月平均NTL亮度之间的关系,这些数据来自NASA的Black Marble月度NTL复合材料。使用Pearson相关分析来确定两种不同降雪条件下接近最低点的指标与辐亮度之间的相关性强度。相关分析结果表明,光照度与路灯点位数量和总标称功率有很强的正相关关系,而与平均桅杆高度有中等的相关系数。而尺度越大的区域相关系数越高。此外,我们发现积雪条件辐射的相关系数更高。采用广义线性(GL)回归分析来检验辐照度与选定指标之间的关联。由于数据中存在多余的零和过分散,零膨胀回归比GL回归表现更好。回归分析的结果表明,辐射度与所选指标之间存在统计学上显著的关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An empirical study of relationships between urban lighting indicators and night-time light radiance
Night-time light (NTL) radiance has a great potential in analyses of dynamic changes in patterns of human activities, and socio-economic and demographic factors. However, most of those analyses are focused on factors at global scales such as the population size, gross domestic product, electric power consumption, fossil fuel carbon dioxide emission etc. In this study we investigate the relationships between three urban lighting indicators and monthly averaged NTL radiance obtained from NASA’s Black Marble monthly NTL composites for 4 study areas in the Czech Republic at local scale. The Pearson correlation analysis was used to identify a strength of the correlations between the indicators and radiance at near-nadir for two different snow conditions. The results from the correlation show that radiance has a strong positive correlation with the number of streetlighting points and their total nominal power, while for the average mast height there were observed moderate correlation coefficients. However, the areas with larger scales have higher correlation coefficients. Moreover, we found that the correlation coefficients are higher for snow-covered condition radiances. Generalized linear (GL) regression analysis was used to examine an association between the radiance and selected indicators. Owing to the excess zeros and overdispersion in the data, the zero-inflated regression performs better than the GL regression. Results from the regression analysis evince a statistically significant relationship between the radiance and selected indicators.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Neural Network World
Neural Network World 工程技术-计算机:人工智能
CiteScore
1.80
自引率
0.00%
发文量
0
审稿时长
12 months
期刊介绍: Neural Network World is a bimonthly journal providing the latest developments in the field of informatics with attention mainly devoted to the problems of: brain science, theory and applications of neural networks (both artificial and natural), fuzzy-neural systems, methods and applications of evolutionary algorithms, methods of parallel and mass-parallel computing, problems of soft-computing, methods of artificial intelligence.
期刊最新文献
Water quality image classification for aquaculture using deep transfer learning Enhanced QOS energy-efficient routing algorithm using deep belief neural network in hybrid falcon-improved ACO nature-inspired optimization in wireless sensor networks Vibration analyses of railway systems using proposed neural predictors A self-adaptive deep learning-based model to predict cloud workload Integration of railway infrastructure topological description elements from the microL2 to the macroN0,L0 level of detail
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1