基于深度学习的视网膜OCT图像无监督去噪方法

IF 1.6 4区 物理与天体物理 Q3 OPTICS 光学学报 Pub Date : 2023-01-01 DOI:10.3788/aos230720
吴广义 Wu Guangyi, 袁卓群 Yuan Zhuoqun, 梁艳梅 Liang Yanmei
{"title":"基于深度学习的视网膜OCT图像无监督去噪方法","authors":"吴广义 Wu Guangyi, 袁卓群 Yuan Zhuoqun, 梁艳梅 Liang Yanmei","doi":"10.3788/aos230720","DOIUrl":null,"url":null,"abstract":"以散斑噪声为主的噪声干扰严重影响视网膜光学相干层析(OCT)图像质量。深度学习是一种有效的去噪方法。但对活体成像而言,其很难获取多帧配准的真值图像,这影响了监督学习方法的效果。提出一种无监督深度残差稀疏注意力网络用于视网膜OCT图像去噪,并分别从视觉评价和数值评价两方面与传统的三维块匹配滤波去噪算法和经典的深度学习去噪网络进行对比。研究了监督学习与无监督学习策略下3种卷积神经网络的去噪性能,并利用公开的视网膜OCT图像数据集进行泛化能力测试。实验结果表明:所提算法的视觉评价和数值评价均具有良好的降噪效果,可以实现视网膜OCT图像高质量降噪,具有较强的泛化性,而且与监督学习相比,无监督学习在数据集不充分时仍能获得较好的降噪性能,可以有效地辅助医生进行准确高效的临床诊断。","PeriodicalId":7103,"journal":{"name":"光学学报","volume":"46 1","pages":"0"},"PeriodicalIF":1.6000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"基于深度学习的视网膜OCT图像无监督去噪方法\",\"authors\":\"吴广义 Wu Guangyi, 袁卓群 Yuan Zhuoqun, 梁艳梅 Liang Yanmei\",\"doi\":\"10.3788/aos230720\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"以散斑噪声为主的噪声干扰严重影响视网膜光学相干层析(OCT)图像质量。深度学习是一种有效的去噪方法。但对活体成像而言,其很难获取多帧配准的真值图像,这影响了监督学习方法的效果。提出一种无监督深度残差稀疏注意力网络用于视网膜OCT图像去噪,并分别从视觉评价和数值评价两方面与传统的三维块匹配滤波去噪算法和经典的深度学习去噪网络进行对比。研究了监督学习与无监督学习策略下3种卷积神经网络的去噪性能,并利用公开的视网膜OCT图像数据集进行泛化能力测试。实验结果表明:所提算法的视觉评价和数值评价均具有良好的降噪效果,可以实现视网膜OCT图像高质量降噪,具有较强的泛化性,而且与监督学习相比,无监督学习在数据集不充分时仍能获得较好的降噪性能,可以有效地辅助医生进行准确高效的临床诊断。\",\"PeriodicalId\":7103,\"journal\":{\"name\":\"光学学报\",\"volume\":\"46 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"光学学报\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3788/aos230720\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"光学学报","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3788/aos230720","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

摘要

以散斑噪声为主的噪声干扰严重影响视网膜光学相干层析(OCT)图像质量。深度学习是一种有效的去噪方法。但对活体成像而言,其很难获取多帧配准的真值图像,这影响了监督学习方法的效果。提出一种无监督深度残差稀疏注意力网络用于视网膜OCT图像去噪,并分别从视觉评价和数值评价两方面与传统的三维块匹配滤波去噪算法和经典的深度学习去噪网络进行对比。研究了监督学习与无监督学习策略下3种卷积神经网络的去噪性能,并利用公开的视网膜OCT图像数据集进行泛化能力测试。实验结果表明:所提算法的视觉评价和数值评价均具有良好的降噪效果,可以实现视网膜OCT图像高质量降噪,具有较强的泛化性,而且与监督学习相比,无监督学习在数据集不充分时仍能获得较好的降噪性能,可以有效地辅助医生进行准确高效的临床诊断。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于深度学习的视网膜OCT图像无监督去噪方法
以散斑噪声为主的噪声干扰严重影响视网膜光学相干层析(OCT)图像质量。深度学习是一种有效的去噪方法。但对活体成像而言,其很难获取多帧配准的真值图像,这影响了监督学习方法的效果。提出一种无监督深度残差稀疏注意力网络用于视网膜OCT图像去噪,并分别从视觉评价和数值评价两方面与传统的三维块匹配滤波去噪算法和经典的深度学习去噪网络进行对比。研究了监督学习与无监督学习策略下3种卷积神经网络的去噪性能,并利用公开的视网膜OCT图像数据集进行泛化能力测试。实验结果表明:所提算法的视觉评价和数值评价均具有良好的降噪效果,可以实现视网膜OCT图像高质量降噪,具有较强的泛化性,而且与监督学习相比,无监督学习在数据集不充分时仍能获得较好的降噪性能,可以有效地辅助医生进行准确高效的临床诊断。
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
光学学报
光学学报 光学
CiteScore
2.80
自引率
37.50%
发文量
16537
期刊介绍: Researching is owned by Chinese Laser Press (CLP), which is established by Shanghai Institute of Optics and Fine Mechanics and Chinese Optical Society in 2009. Nowadays, CLP publishes 11 journals and manages three online platforms. Journal publishing activities include both traditional and digital models, and the first journal can be traced back to 1964. The CLP Online Library includes the CLP journals and partnered ones in China, and provides literature and intelligence services for users. The product platform, named as OEShow, connects sellers and buyers of optoelectronics products. Researching (formerly known as The CLP Publishing) is featured with stable operation and leading technology, collects CLP journals and partnered optics and photonics journals, and provides readers an optical publishing platform with global influence. CLP is on the way of building a modern publishing group combining traditional business and digital publishing.
期刊最新文献
考虑小尺寸效应的Micro-LED驱动结构设计 障碍物遮挡下漂移涡旋光束拓扑荷数的测量 基于FPGA异构计算的数据协调系统设计 基于二进制编码条纹的三维测量方法 基于YOLOv5s模型的光纤振动传感事件精准检测研究
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1