Ping Liu, Kaixing Cai, Keliang Wang, Tianxiang Zhao, Duan-Jian Tao
{"title":"高度缺陷的HKUST-1具有优异的稳定性和SO2吸收量:功能化离子液体的疏水装甲效应","authors":"Ping Liu, Kaixing Cai, Keliang Wang, Tianxiang Zhao, Duan-Jian Tao","doi":"10.1016/j.gee.2023.10.003","DOIUrl":null,"url":null,"abstract":"Water stability is one of the most important factors restricting the practical application of metal organic frameworks (MOFs). In this work, we fabricate a highly defective HKUST-1 framework with a mixed valence of CuI/CuII by mechanical ball milling method. This defective HKUST-1 is embellished by functionalized ionic liquids as hydrophobic armor, making the hybrid HIL1@HKUST-1 exhibits outstanding water stability, remarkable SO2 adsorption (up to 5.71 mmol·g−1), and record-breaking selectivity (1070 for SO2/CO2 and 31515 for SO2/N2) at 25oC and 0.1 bar, even in wet conditions.","PeriodicalId":12744,"journal":{"name":"Green Energy & Environment","volume":"78 1","pages":"0"},"PeriodicalIF":10.7000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Highly defective HKUST-1 with excellent stability and SO2 uptake: The hydrophobic armor effect of functionalized ionic liquids\",\"authors\":\"Ping Liu, Kaixing Cai, Keliang Wang, Tianxiang Zhao, Duan-Jian Tao\",\"doi\":\"10.1016/j.gee.2023.10.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Water stability is one of the most important factors restricting the practical application of metal organic frameworks (MOFs). In this work, we fabricate a highly defective HKUST-1 framework with a mixed valence of CuI/CuII by mechanical ball milling method. This defective HKUST-1 is embellished by functionalized ionic liquids as hydrophobic armor, making the hybrid HIL1@HKUST-1 exhibits outstanding water stability, remarkable SO2 adsorption (up to 5.71 mmol·g−1), and record-breaking selectivity (1070 for SO2/CO2 and 31515 for SO2/N2) at 25oC and 0.1 bar, even in wet conditions.\",\"PeriodicalId\":12744,\"journal\":{\"name\":\"Green Energy & Environment\",\"volume\":\"78 1\",\"pages\":\"0\"},\"PeriodicalIF\":10.7000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Green Energy & Environment\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.gee.2023.10.003\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Green Energy & Environment","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.gee.2023.10.003","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Highly defective HKUST-1 with excellent stability and SO2 uptake: The hydrophobic armor effect of functionalized ionic liquids
Water stability is one of the most important factors restricting the practical application of metal organic frameworks (MOFs). In this work, we fabricate a highly defective HKUST-1 framework with a mixed valence of CuI/CuII by mechanical ball milling method. This defective HKUST-1 is embellished by functionalized ionic liquids as hydrophobic armor, making the hybrid HIL1@HKUST-1 exhibits outstanding water stability, remarkable SO2 adsorption (up to 5.71 mmol·g−1), and record-breaking selectivity (1070 for SO2/CO2 and 31515 for SO2/N2) at 25oC and 0.1 bar, even in wet conditions.
期刊介绍:
Green Energy & Environment (GEE) is an internationally recognized journal that undergoes a rigorous peer-review process. It focuses on interdisciplinary research related to green energy and the environment, covering a wide range of topics including biofuel and bioenergy, energy storage and networks, catalysis for sustainable processes, and materials for energy and the environment. GEE has a broad scope and encourages the submission of original and innovative research in both fundamental and engineering fields. Additionally, GEE serves as a platform for discussions, summaries, reviews, and previews of the impact of green energy on the eco-environment.