5G通信LWDM窄带滤光膜的研制

IF 1.8 4区 物理与天体物理 Q3 OPTICS CHINESE JOURNAL OF LASERS-ZHONGGUO JIGUANG Pub Date : 2023-01-01 DOI:10.3788/cjl221491
张静 Zhang Jing, 刘海成 Liu Haicheng, 付秀华 Fu Xiuhua, 王升耆 Wang Shengqi, 王一博 Wang Yibo, 刘俊岐 Liu Junqi, 张天翔 Zhang Tianxiang, 杨飞 Yang Fei, 李刚 Li Gang
{"title":"5G通信LWDM窄带滤光膜的研制","authors":"张静 Zhang Jing, 刘海成 Liu Haicheng, 付秀华 Fu Xiuhua, 王升耆 Wang Shengqi, 王一博 Wang Yibo, 刘俊岐 Liu Junqi, 张天翔 Zhang Tianxiang, 杨飞 Yang Fei, 李刚 Li Gang","doi":"10.3788/cjl221491","DOIUrl":null,"url":null,"abstract":"为了满足5G光通信对细波分复用(LWDM)窄带滤光膜的要求,笔者采用电子束与离子辅助沉积技术,在K9基底上镀制了高质量光通信滤光膜。提出了一种高精度调试膜厚均匀性与光谱一致性的方法,该方法通过对特殊膜系镀膜结果进行反演分析,能快速分析出Ta2O5和SiO2两种材料光学厚度的误差,根据分析结果调节修正板,可以有效解决光学厚度匹配的问题,改善窄带滤光膜光谱。在镀制过程中采用光学直接监控法监控膜厚,对基板的实时光量值曲线进行拟合,根据拟合结果监控膜层厚度,同时采用晶控平均厚度法对耦合层与非规整膜层进行监控,提高了监控精度。最终制备的滤光膜在-0.2 dB处的带宽为4.1 nm,通带内最大插入损耗为0.14 dB,通带波纹为0.04 dB,-27 dB处带宽为6.0 nm,满足细波分复用窄带滤光膜的技术要求。","PeriodicalId":47922,"journal":{"name":"CHINESE JOURNAL OF LASERS-ZHONGGUO JIGUANG","volume":"13 1","pages":"0"},"PeriodicalIF":1.8000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"5G通信LWDM窄带滤光膜的研制\",\"authors\":\"张静 Zhang Jing, 刘海成 Liu Haicheng, 付秀华 Fu Xiuhua, 王升耆 Wang Shengqi, 王一博 Wang Yibo, 刘俊岐 Liu Junqi, 张天翔 Zhang Tianxiang, 杨飞 Yang Fei, 李刚 Li Gang\",\"doi\":\"10.3788/cjl221491\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"为了满足5G光通信对细波分复用(LWDM)窄带滤光膜的要求,笔者采用电子束与离子辅助沉积技术,在K9基底上镀制了高质量光通信滤光膜。提出了一种高精度调试膜厚均匀性与光谱一致性的方法,该方法通过对特殊膜系镀膜结果进行反演分析,能快速分析出Ta2O5和SiO2两种材料光学厚度的误差,根据分析结果调节修正板,可以有效解决光学厚度匹配的问题,改善窄带滤光膜光谱。在镀制过程中采用光学直接监控法监控膜厚,对基板的实时光量值曲线进行拟合,根据拟合结果监控膜层厚度,同时采用晶控平均厚度法对耦合层与非规整膜层进行监控,提高了监控精度。最终制备的滤光膜在-0.2 dB处的带宽为4.1 nm,通带内最大插入损耗为0.14 dB,通带波纹为0.04 dB,-27 dB处带宽为6.0 nm,满足细波分复用窄带滤光膜的技术要求。\",\"PeriodicalId\":47922,\"journal\":{\"name\":\"CHINESE JOURNAL OF LASERS-ZHONGGUO JIGUANG\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"CHINESE JOURNAL OF LASERS-ZHONGGUO JIGUANG\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3788/cjl221491\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"CHINESE JOURNAL OF LASERS-ZHONGGUO JIGUANG","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3788/cjl221491","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

摘要

为了满足5G光通信对细波分复用(LWDM)窄带滤光膜的要求,笔者采用电子束与离子辅助沉积技术,在K9基底上镀制了高质量光通信滤光膜。提出了一种高精度调试膜厚均匀性与光谱一致性的方法,该方法通过对特殊膜系镀膜结果进行反演分析,能快速分析出Ta2O5和SiO2两种材料光学厚度的误差,根据分析结果调节修正板,可以有效解决光学厚度匹配的问题,改善窄带滤光膜光谱。在镀制过程中采用光学直接监控法监控膜厚,对基板的实时光量值曲线进行拟合,根据拟合结果监控膜层厚度,同时采用晶控平均厚度法对耦合层与非规整膜层进行监控,提高了监控精度。最终制备的滤光膜在-0.2 dB处的带宽为4.1 nm,通带内最大插入损耗为0.14 dB,通带波纹为0.04 dB,-27 dB处带宽为6.0 nm,满足细波分复用窄带滤光膜的技术要求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
5G通信LWDM窄带滤光膜的研制
为了满足5G光通信对细波分复用(LWDM)窄带滤光膜的要求,笔者采用电子束与离子辅助沉积技术,在K9基底上镀制了高质量光通信滤光膜。提出了一种高精度调试膜厚均匀性与光谱一致性的方法,该方法通过对特殊膜系镀膜结果进行反演分析,能快速分析出Ta2O5和SiO2两种材料光学厚度的误差,根据分析结果调节修正板,可以有效解决光学厚度匹配的问题,改善窄带滤光膜光谱。在镀制过程中采用光学直接监控法监控膜厚,对基板的实时光量值曲线进行拟合,根据拟合结果监控膜层厚度,同时采用晶控平均厚度法对耦合层与非规整膜层进行监控,提高了监控精度。最终制备的滤光膜在-0.2 dB处的带宽为4.1 nm,通带内最大插入损耗为0.14 dB,通带波纹为0.04 dB,-27 dB处带宽为6.0 nm,满足细波分复用窄带滤光膜的技术要求。
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.10
自引率
29.40%
发文量
168
期刊最新文献
人红细胞膜骨架超分辨图像的Voronoï分析 路径导引的四波横向剪切干涉波前重构方法 正交相位编码的同轴全息加密存储系统的研究 基于受激声子极化激元的太赫兹波传输调控与非线性效应研究 基于金字塔长程Transformer的OCT图像超分辨率重建
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1