Xuzhao LU, Chul-Woo Kim, Kai-Chun Chang, Zhuoran Han, Limin Sun
{"title":"基于不同运动速度下车辆振动交叉功率谱的桥梁频率识别","authors":"Xuzhao LU, Chul-Woo Kim, Kai-Chun Chang, Zhuoran Han, Limin Sun","doi":"10.1142/s0219455423400357","DOIUrl":null,"url":null,"abstract":"In recent years, a rapid bridge health monitoring technology has been developed using an instrumental moving vehicle. Using recorded vehicle vibration data, bridge frequencies are identified for bridge health monitoring or finite element model updating. Target bridge frequencies with significant amplitudes in the vehicle’s vibration frequency spectra are expected to be found. However, in the coupled vehicle–bridge interaction (VBI) system, bridge vibration-relevant vehicle dynamics might not be noticeable. The bridge frequency would be difficult to identify because of the potential influence of road roughness. To resolve this difficulty, a novel bridge frequency identification method is proposed to mitigate the negative effects of road roughness. First, theoretical derivations are done to ascertain the VBI system dynamic characteristics considering road surface roughness. Our findings showed that the road roughness-relevant vehicle dynamics are closely related with the traveling speed, whereas the bridge frequency remains approximately constant. Theoretical investigations indicated that cross-power spectra between vehicle dynamics at multiple moving speeds are effective to mitigate the negative effects of road roughness. Presumably, it is feasible to identify the target bridge frequency from the cross-power spectra. Both the dynamic characteristics of the VBI system and the effectiveness of the proposed method for bridge frequency identification were examined using finite element simulations and laboratory experiments. Compared to existing methods, the proposed method is widely applicable to real-world situations and difficulties.","PeriodicalId":54939,"journal":{"name":"International Journal of Structural Stability and Dynamics","volume":"2 1","pages":"0"},"PeriodicalIF":3.0000,"publicationDate":"2023-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bridge Frequency Identification using Cross-power Spectra of Vehicle Vibrations from Multiple Moving Speeds\",\"authors\":\"Xuzhao LU, Chul-Woo Kim, Kai-Chun Chang, Zhuoran Han, Limin Sun\",\"doi\":\"10.1142/s0219455423400357\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In recent years, a rapid bridge health monitoring technology has been developed using an instrumental moving vehicle. Using recorded vehicle vibration data, bridge frequencies are identified for bridge health monitoring or finite element model updating. Target bridge frequencies with significant amplitudes in the vehicle’s vibration frequency spectra are expected to be found. However, in the coupled vehicle–bridge interaction (VBI) system, bridge vibration-relevant vehicle dynamics might not be noticeable. The bridge frequency would be difficult to identify because of the potential influence of road roughness. To resolve this difficulty, a novel bridge frequency identification method is proposed to mitigate the negative effects of road roughness. First, theoretical derivations are done to ascertain the VBI system dynamic characteristics considering road surface roughness. Our findings showed that the road roughness-relevant vehicle dynamics are closely related with the traveling speed, whereas the bridge frequency remains approximately constant. Theoretical investigations indicated that cross-power spectra between vehicle dynamics at multiple moving speeds are effective to mitigate the negative effects of road roughness. Presumably, it is feasible to identify the target bridge frequency from the cross-power spectra. Both the dynamic characteristics of the VBI system and the effectiveness of the proposed method for bridge frequency identification were examined using finite element simulations and laboratory experiments. Compared to existing methods, the proposed method is widely applicable to real-world situations and difficulties.\",\"PeriodicalId\":54939,\"journal\":{\"name\":\"International Journal of Structural Stability and Dynamics\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2023-10-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Structural Stability and Dynamics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s0219455423400357\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Structural Stability and Dynamics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0219455423400357","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
Bridge Frequency Identification using Cross-power Spectra of Vehicle Vibrations from Multiple Moving Speeds
In recent years, a rapid bridge health monitoring technology has been developed using an instrumental moving vehicle. Using recorded vehicle vibration data, bridge frequencies are identified for bridge health monitoring or finite element model updating. Target bridge frequencies with significant amplitudes in the vehicle’s vibration frequency spectra are expected to be found. However, in the coupled vehicle–bridge interaction (VBI) system, bridge vibration-relevant vehicle dynamics might not be noticeable. The bridge frequency would be difficult to identify because of the potential influence of road roughness. To resolve this difficulty, a novel bridge frequency identification method is proposed to mitigate the negative effects of road roughness. First, theoretical derivations are done to ascertain the VBI system dynamic characteristics considering road surface roughness. Our findings showed that the road roughness-relevant vehicle dynamics are closely related with the traveling speed, whereas the bridge frequency remains approximately constant. Theoretical investigations indicated that cross-power spectra between vehicle dynamics at multiple moving speeds are effective to mitigate the negative effects of road roughness. Presumably, it is feasible to identify the target bridge frequency from the cross-power spectra. Both the dynamic characteristics of the VBI system and the effectiveness of the proposed method for bridge frequency identification were examined using finite element simulations and laboratory experiments. Compared to existing methods, the proposed method is widely applicable to real-world situations and difficulties.
期刊介绍:
The aim of this journal is to provide a unique forum for the publication and rapid dissemination of original research on stability and dynamics of structures. Papers that deal with conventional land-based structures, aerospace structures, marine structures, as well as biostructures and micro- and nano-structures are considered. Papers devoted to all aspects of structural stability and dynamics (both transient and vibration response), ranging from mathematical formulations, novel methods of solutions, to experimental investigations and practical applications in civil, mechanical, aerospace, marine, bio- and nano-engineering will be published.
The important subjects of structural stability and structural dynamics are placed together in this journal because they share somewhat fundamental elements. In recognition of the considerable research interests and recent proliferation of papers in these subjects, it is hoped that the journal may help bring together papers focused on related subjects, including the state-of-the-art surveys, so as to provide a more effective medium for disseminating the latest developments to researchers and engineers.
This journal features a section for technical notes that allows researchers to publish their initial findings or new ideas more speedily. Discussions of papers and concepts will also be published so that researchers can have a vibrant and timely communication with others.