Yan Lu, Yibo Li, Qiang Yue, Jingsong Liu, Yong Zhang, Lei Dong
{"title":"一步热冲压成形过程中UD CF/PEEK预浸料的速率-温度相关粘-超弹性本构模型","authors":"Yan Lu, Yibo Li, Qiang Yue, Jingsong Liu, Yong Zhang, Lei Dong","doi":"10.1142/s1758825124500078","DOIUrl":null,"url":null,"abstract":"An anisotropic visco-hyperelastic constitutive model for rate-temperature-dependent deformation during one-step hot stamping forming simulation of unidirectional (UD) CF/PEEK prepregs is presented. This constitutive model is based on strain energy decomposition and a multiplicative decomposition of the deformation gradient. Two simple Maxwell models are used to characterize the viscoelastic behavior of the melted PEEK matrix and longitudinal shear deformation, respectively, and a shear invariant of [Formula: see text] is proposed to calculate the shear deformation. Moreover, the fiber stretching deformation is modeled by an anisotropic hyperelastic model. To obtain the model parameters, tensile tests at different strain rates and temperatures above the melt temperature of PEEK are performed on [Formula: see text], [Formula: see text], and [Formula: see text] CF/PEEK prepreg specimens, respectively. In parallel, the [0] 8 and [45] 8 curved beam specimens are experimentally fabricated to validate the constitutive model. The VUMAT subroutine is developed according to the proposed constitutive model and applied for a [Formula: see text] off-axis tensile simulation and hot-stamping forming simulation of CF/PEEK prepregs. The experimental and simulation results show that the materials flow, distribution of strain and stress, forming defects (wrinkles and overlap) of CF/PEEK curved beam can be captured by the proposed model.","PeriodicalId":49186,"journal":{"name":"International Journal of Applied Mechanics","volume":"6 1","pages":"0"},"PeriodicalIF":2.9000,"publicationDate":"2023-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Rate-temperature-dependent Visco-hyperelastic Constitutive Model for UD CF/PEEK Prepregs During a One-Step Hot Stamping Forming Process\",\"authors\":\"Yan Lu, Yibo Li, Qiang Yue, Jingsong Liu, Yong Zhang, Lei Dong\",\"doi\":\"10.1142/s1758825124500078\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An anisotropic visco-hyperelastic constitutive model for rate-temperature-dependent deformation during one-step hot stamping forming simulation of unidirectional (UD) CF/PEEK prepregs is presented. This constitutive model is based on strain energy decomposition and a multiplicative decomposition of the deformation gradient. Two simple Maxwell models are used to characterize the viscoelastic behavior of the melted PEEK matrix and longitudinal shear deformation, respectively, and a shear invariant of [Formula: see text] is proposed to calculate the shear deformation. Moreover, the fiber stretching deformation is modeled by an anisotropic hyperelastic model. To obtain the model parameters, tensile tests at different strain rates and temperatures above the melt temperature of PEEK are performed on [Formula: see text], [Formula: see text], and [Formula: see text] CF/PEEK prepreg specimens, respectively. In parallel, the [0] 8 and [45] 8 curved beam specimens are experimentally fabricated to validate the constitutive model. The VUMAT subroutine is developed according to the proposed constitutive model and applied for a [Formula: see text] off-axis tensile simulation and hot-stamping forming simulation of CF/PEEK prepregs. The experimental and simulation results show that the materials flow, distribution of strain and stress, forming defects (wrinkles and overlap) of CF/PEEK curved beam can be captured by the proposed model.\",\"PeriodicalId\":49186,\"journal\":{\"name\":\"International Journal of Applied Mechanics\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2023-10-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Applied Mechanics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s1758825124500078\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Applied Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s1758825124500078","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MECHANICS","Score":null,"Total":0}
A Rate-temperature-dependent Visco-hyperelastic Constitutive Model for UD CF/PEEK Prepregs During a One-Step Hot Stamping Forming Process
An anisotropic visco-hyperelastic constitutive model for rate-temperature-dependent deformation during one-step hot stamping forming simulation of unidirectional (UD) CF/PEEK prepregs is presented. This constitutive model is based on strain energy decomposition and a multiplicative decomposition of the deformation gradient. Two simple Maxwell models are used to characterize the viscoelastic behavior of the melted PEEK matrix and longitudinal shear deformation, respectively, and a shear invariant of [Formula: see text] is proposed to calculate the shear deformation. Moreover, the fiber stretching deformation is modeled by an anisotropic hyperelastic model. To obtain the model parameters, tensile tests at different strain rates and temperatures above the melt temperature of PEEK are performed on [Formula: see text], [Formula: see text], and [Formula: see text] CF/PEEK prepreg specimens, respectively. In parallel, the [0] 8 and [45] 8 curved beam specimens are experimentally fabricated to validate the constitutive model. The VUMAT subroutine is developed according to the proposed constitutive model and applied for a [Formula: see text] off-axis tensile simulation and hot-stamping forming simulation of CF/PEEK prepregs. The experimental and simulation results show that the materials flow, distribution of strain and stress, forming defects (wrinkles and overlap) of CF/PEEK curved beam can be captured by the proposed model.
期刊介绍:
The journal has as its objective the publication and wide electronic dissemination of innovative and consequential research in applied mechanics. IJAM welcomes high-quality original research papers in all aspects of applied mechanics from contributors throughout the world. The journal aims to promote the international exchange of new knowledge and recent development information in all aspects of applied mechanics. In addition to covering the classical branches of applied mechanics, namely solid mechanics, fluid mechanics, thermodynamics, and material science, the journal also encourages contributions from newly emerging areas such as biomechanics, electromechanics, the mechanical behavior of advanced materials, nanomechanics, and many other inter-disciplinary research areas in which the concepts of applied mechanics are extensively applied and developed.