{"title":"用于监控信用评分模型的可视化分析","authors":"Daiane Rodrigues Baldo, Murilo Santos Regio, Isabel Harb Manssour","doi":"10.1177/14738716231180803","DOIUrl":null,"url":null,"abstract":"Financial institutions use credit Scoring models to predict the default of their customers and assist in decision-making about the granting of credit. As a large volume of credit transactions is generated daily alongside a potential increase in this information with the advent of Open Finance, it is challenging to monitor this information quickly so we can act in case these models lose performance. Considering this context, our research aims to provide a Visual Analytics approach to assist in monitoring credit models. For this, initially, we carried out a systematic review of the literature on the subject and conducted semi-structured interviews with 13 domain experts. Considering the needs raised with this study, we created a prototype called Visual Analytics for monitoring Credit Scoring models (VACS). The main contributions of this work are twofold: The requirements gathered through interviews with specialists, which allowed the analysis of how the models are monitored within financial institutions, something that is not disclosed and that can help in the standardization of the monitoring process; and VACS, which was evaluated by four domain experts who considered it a very complete and easy-to-use tool.","PeriodicalId":50360,"journal":{"name":"Information Visualization","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2023-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Visual analytics for monitoring credit scoring models\",\"authors\":\"Daiane Rodrigues Baldo, Murilo Santos Regio, Isabel Harb Manssour\",\"doi\":\"10.1177/14738716231180803\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Financial institutions use credit Scoring models to predict the default of their customers and assist in decision-making about the granting of credit. As a large volume of credit transactions is generated daily alongside a potential increase in this information with the advent of Open Finance, it is challenging to monitor this information quickly so we can act in case these models lose performance. Considering this context, our research aims to provide a Visual Analytics approach to assist in monitoring credit models. For this, initially, we carried out a systematic review of the literature on the subject and conducted semi-structured interviews with 13 domain experts. Considering the needs raised with this study, we created a prototype called Visual Analytics for monitoring Credit Scoring models (VACS). The main contributions of this work are twofold: The requirements gathered through interviews with specialists, which allowed the analysis of how the models are monitored within financial institutions, something that is not disclosed and that can help in the standardization of the monitoring process; and VACS, which was evaluated by four domain experts who considered it a very complete and easy-to-use tool.\",\"PeriodicalId\":50360,\"journal\":{\"name\":\"Information Visualization\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2023-06-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Information Visualization\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/14738716231180803\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Visualization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/14738716231180803","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
Visual analytics for monitoring credit scoring models
Financial institutions use credit Scoring models to predict the default of their customers and assist in decision-making about the granting of credit. As a large volume of credit transactions is generated daily alongside a potential increase in this information with the advent of Open Finance, it is challenging to monitor this information quickly so we can act in case these models lose performance. Considering this context, our research aims to provide a Visual Analytics approach to assist in monitoring credit models. For this, initially, we carried out a systematic review of the literature on the subject and conducted semi-structured interviews with 13 domain experts. Considering the needs raised with this study, we created a prototype called Visual Analytics for monitoring Credit Scoring models (VACS). The main contributions of this work are twofold: The requirements gathered through interviews with specialists, which allowed the analysis of how the models are monitored within financial institutions, something that is not disclosed and that can help in the standardization of the monitoring process; and VACS, which was evaluated by four domain experts who considered it a very complete and easy-to-use tool.
期刊介绍:
Information Visualization is essential reading for researchers and practitioners of information visualization and is of interest to computer scientists and data analysts working on related specialisms. This journal is an international, peer-reviewed journal publishing articles on fundamental research and applications of information visualization. The journal acts as a dedicated forum for the theories, methodologies, techniques and evaluations of information visualization and its applications.
The journal is a core vehicle for developing a generic research agenda for the field by identifying and developing the unique and significant aspects of information visualization. Emphasis is placed on interdisciplinary material and on the close connection between theory and practice.
This journal is a member of the Committee on Publication Ethics (COPE).