瞬态膜冷却问题中参考温度和传热系数的同时估计

IF 1.1 Q3 Engineering Journal of Thermal Engineering Pub Date : 2023-05-19 DOI:10.18186/thermal.1332543
Vashista ADEMANE, Ravikiran KADOLI, Vijaykumar HINDASAGERI
{"title":"瞬态膜冷却问题中参考温度和传热系数的同时估计","authors":"Vashista ADEMANE, Ravikiran KADOLI, Vijaykumar HINDASAGERI","doi":"10.18186/thermal.1332543","DOIUrl":null,"url":null,"abstract":"This paper aims to simultaneously estimate the reference temperature and heat transfer coefficient in film cooling situations from transient temperature measurements. The exist-ing steady-state technique is a tedious process and employs distinct boundary conditions to evaluate each parameters of the film cooling. Applying different boundary conditions may lead to errors in the estimated parameters due to differences in aerodynamic condi-tions. On the other hand, a transient technique can estimate both parameters in a single test by utilizing short-duration transient temperature data. Hence, the present study uses a novel approach for solving transient film cooling problems based on the inverse heat con-duction approach, which can simultaneously estimate heat transfer coefficient and refer-ence temperature. The present method employs an optimization technique known as the Levenberg-Marquardt Algorithm. The objective function for the inverse algorithm is con-structed using the analytical solution of a transient one-dimensional semi-infinite body. The transient surface temperature data required for the present analysis is obtained through a numerical simulation of film cooling arrangement over a flat surface. Laterally averaged effectiveness and heat transfer coefficient for blowing ratios of 0.5, 0.8, and 1.0 are analyzed using the present technique and compared against the steady-state simulation results to demonstrate the methodology. An average deviation of around 7% for the estimated effec-tiveness and 4% for the heat transfer coefficient values are observed between the present IHCP method and the steady state simulation results. The deviation in heat transfer coeffi-cient predominately occurred near the film hole exit of x/d < 5, which might have occurred due to the conjugate solution employed in the present work.","PeriodicalId":45841,"journal":{"name":"Journal of Thermal Engineering","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2023-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Simultaneous estimation of reference temperature and heat transfer coefficient in transient film cooling problems\",\"authors\":\"Vashista ADEMANE, Ravikiran KADOLI, Vijaykumar HINDASAGERI\",\"doi\":\"10.18186/thermal.1332543\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper aims to simultaneously estimate the reference temperature and heat transfer coefficient in film cooling situations from transient temperature measurements. The exist-ing steady-state technique is a tedious process and employs distinct boundary conditions to evaluate each parameters of the film cooling. Applying different boundary conditions may lead to errors in the estimated parameters due to differences in aerodynamic condi-tions. On the other hand, a transient technique can estimate both parameters in a single test by utilizing short-duration transient temperature data. Hence, the present study uses a novel approach for solving transient film cooling problems based on the inverse heat con-duction approach, which can simultaneously estimate heat transfer coefficient and refer-ence temperature. The present method employs an optimization technique known as the Levenberg-Marquardt Algorithm. The objective function for the inverse algorithm is con-structed using the analytical solution of a transient one-dimensional semi-infinite body. The transient surface temperature data required for the present analysis is obtained through a numerical simulation of film cooling arrangement over a flat surface. Laterally averaged effectiveness and heat transfer coefficient for blowing ratios of 0.5, 0.8, and 1.0 are analyzed using the present technique and compared against the steady-state simulation results to demonstrate the methodology. An average deviation of around 7% for the estimated effec-tiveness and 4% for the heat transfer coefficient values are observed between the present IHCP method and the steady state simulation results. The deviation in heat transfer coeffi-cient predominately occurred near the film hole exit of x/d < 5, which might have occurred due to the conjugate solution employed in the present work.\",\"PeriodicalId\":45841,\"journal\":{\"name\":\"Journal of Thermal Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-05-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Thermal Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18186/thermal.1332543\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Thermal Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18186/thermal.1332543","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

本文旨在从瞬态温度测量中同时估计出膜状冷却情况下的参考温度和传热系数。现有的稳态技术是一个繁琐的过程,并且采用不同的边界条件来计算膜冷却的各个参数。由于气动条件的不同,应用不同的边界条件可能导致估计参数的误差。另一方面,瞬态技术可以利用短时间瞬态温度数据在一次测试中估计这两个参数。因此,本研究采用了一种基于逆热传导方法的求解瞬态膜冷却问题的新方法,该方法可以同时估计传热系数和参考温度。目前的方法采用了一种被称为Levenberg-Marquardt算法的优化技术。利用瞬态一维半无限体的解析解,构造了逆算法的目标函数。本分析所需的瞬态表面温度数据是通过对平面上的气膜冷却布置进行数值模拟得到的。在吹气比为0.5、0.8和1.0时,分析了横向平均效率和传热系数,并将其与稳态模拟结果进行了比较,以证明该方法。计算结果与稳态模拟结果的平均偏差分别为7%和4%。换热系数的偏差主要发生在x/d <的膜孔出口附近;5,这可能是由于在本工作中使用的共轭解而发生的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Simultaneous estimation of reference temperature and heat transfer coefficient in transient film cooling problems
This paper aims to simultaneously estimate the reference temperature and heat transfer coefficient in film cooling situations from transient temperature measurements. The exist-ing steady-state technique is a tedious process and employs distinct boundary conditions to evaluate each parameters of the film cooling. Applying different boundary conditions may lead to errors in the estimated parameters due to differences in aerodynamic condi-tions. On the other hand, a transient technique can estimate both parameters in a single test by utilizing short-duration transient temperature data. Hence, the present study uses a novel approach for solving transient film cooling problems based on the inverse heat con-duction approach, which can simultaneously estimate heat transfer coefficient and refer-ence temperature. The present method employs an optimization technique known as the Levenberg-Marquardt Algorithm. The objective function for the inverse algorithm is con-structed using the analytical solution of a transient one-dimensional semi-infinite body. The transient surface temperature data required for the present analysis is obtained through a numerical simulation of film cooling arrangement over a flat surface. Laterally averaged effectiveness and heat transfer coefficient for blowing ratios of 0.5, 0.8, and 1.0 are analyzed using the present technique and compared against the steady-state simulation results to demonstrate the methodology. An average deviation of around 7% for the estimated effec-tiveness and 4% for the heat transfer coefficient values are observed between the present IHCP method and the steady state simulation results. The deviation in heat transfer coeffi-cient predominately occurred near the film hole exit of x/d < 5, which might have occurred due to the conjugate solution employed in the present work.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.40
自引率
18.20%
发文量
61
审稿时长
4 weeks
期刊介绍: Journal of Thermal Enginering is aimed at giving a recognized platform to students, researchers, research scholars, teachers, authors and other professionals in the field of research in Thermal Engineering subjects, to publish their original and current research work to a wide, international audience. In order to achieve this goal, we will have applied for SCI-Expanded Index in 2021 after having an Impact Factor in 2020. The aim of the journal, published on behalf of Yildiz Technical University in Istanbul-Turkey, is to not only include actual, original and applied studies prepared on the sciences of heat transfer and thermodynamics, and contribute to the literature of engineering sciences on the national and international areas but also help the development of Mechanical Engineering. Engineers and academicians from disciplines of Power Plant Engineering, Energy Engineering, Building Services Engineering, HVAC Engineering, Solar Engineering, Wind Engineering, Nanoengineering, surface engineering, thin film technologies, and Computer Aided Engineering will be expected to benefit from this journal’s outputs.
期刊最新文献
Evaluation of the thermal efficiency of nanofluid flows in flat plate solar collector Experimental investigation of double-glazed double-pass solar airheater (DG-DPSAH) with multi-v ribs having trapezoidal roughness geometry Experimental evaluation of the effect of leakage in scroll compressor Performance enhancement of stepped solar still coupled with evacuated tube collector An experimental investigation to study the performance characteristics of heat pipe using aqueous hybrid nanofluids
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1