{"title":"基于n -取代谷氨酸的表面活性聚酯是一种很有前景的生物医学材料","authors":"Nataliia Fihurka, Ihor Tarnavchyk, Nataliya Nosova, Serhii Varvarenko, Iryna Dron, Dmytro Ostapiv, Vasyl Vlislo, Volodymyr Samaryk","doi":"10.1080/00914037.2023.2274591","DOIUrl":null,"url":null,"abstract":"In the present work, N-substituted glutamic acid, polyethylene and polypropylene glycols have been used to design biocompatible copolyesters via Steglich reactions. Due to the presence of alternating hydrophilic and hydrophobic blocks in their structures, these copolyesters are able to form self-stabilized nanoparticle dispersions in aqueous media. The lipophilic core of these nanoparticles can solubilize poorly water-soluble compounds and release them into a model of lipids in a human body. Moreover, the obtained copolyesters possess no cytotoxic effects over a wide concentration range. Thus, we conclude that obtained copolyesters show significant promise for further development as drug delivery systems.","PeriodicalId":14203,"journal":{"name":"International Journal of Polymeric Materials and Polymeric Biomaterials","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Surface active polyesters based on N-substituted glutamic acid as promising materials for biomedical applications\",\"authors\":\"Nataliia Fihurka, Ihor Tarnavchyk, Nataliya Nosova, Serhii Varvarenko, Iryna Dron, Dmytro Ostapiv, Vasyl Vlislo, Volodymyr Samaryk\",\"doi\":\"10.1080/00914037.2023.2274591\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the present work, N-substituted glutamic acid, polyethylene and polypropylene glycols have been used to design biocompatible copolyesters via Steglich reactions. Due to the presence of alternating hydrophilic and hydrophobic blocks in their structures, these copolyesters are able to form self-stabilized nanoparticle dispersions in aqueous media. The lipophilic core of these nanoparticles can solubilize poorly water-soluble compounds and release them into a model of lipids in a human body. Moreover, the obtained copolyesters possess no cytotoxic effects over a wide concentration range. Thus, we conclude that obtained copolyesters show significant promise for further development as drug delivery systems.\",\"PeriodicalId\":14203,\"journal\":{\"name\":\"International Journal of Polymeric Materials and Polymeric Biomaterials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2023-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Polymeric Materials and Polymeric Biomaterials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/00914037.2023.2274591\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Polymeric Materials and Polymeric Biomaterials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/00914037.2023.2274591","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Surface active polyesters based on N-substituted glutamic acid as promising materials for biomedical applications
In the present work, N-substituted glutamic acid, polyethylene and polypropylene glycols have been used to design biocompatible copolyesters via Steglich reactions. Due to the presence of alternating hydrophilic and hydrophobic blocks in their structures, these copolyesters are able to form self-stabilized nanoparticle dispersions in aqueous media. The lipophilic core of these nanoparticles can solubilize poorly water-soluble compounds and release them into a model of lipids in a human body. Moreover, the obtained copolyesters possess no cytotoxic effects over a wide concentration range. Thus, we conclude that obtained copolyesters show significant promise for further development as drug delivery systems.
期刊介绍:
International Journal of Polymeric Materials and Polymeric Biomaterials is the official publication of the International Society for Biomedical Polymers and Polymeric Biomaterials (ISBPPB). This journal provides a forum for the publication of peer-reviewed, English language articles and select reviews on all aspects of polymeric materials and biomedical polymers. Being interdisciplinary in nature, this journal publishes extensive contributions in the areas of encapsulation and controlled release technologies to address innovation needs as well.