激活截面测量的HPGe探测器响应的表征:回归方法与蒙特卡罗方法

IF 1.5 4区 工程技术 Q2 NUCLEAR SCIENCE & TECHNOLOGY Journal of Nuclear Science and Technology Pub Date : 2023-11-06 DOI:10.1080/00223131.2023.2278598
Valentina Semkova, Naohiko Otuka, Arjan J. M. Plompen
{"title":"激活截面测量的HPGe探测器响应的表征:回归方法与蒙特卡罗方法","authors":"Valentina Semkova, Naohiko Otuka, Arjan J. M. Plompen","doi":"10.1080/00223131.2023.2278598","DOIUrl":null,"url":null,"abstract":"The full energy peak efficiencies and covariances of a high purity germanium (HPGe) detector determined by the regression method and Monte Carlo method were compared. The impact of the obtained results on the neutron activation cross sections measured relative to monitor cross sections was determined. In the regression method, the efficiencies measured for a set of calibration point sources were analysed by the least-squares analysis. In the Monte Carlo method, the efficiencies for the calibration point sources were calculated by MCNP. The covariances of the efficiencies determined by the regression method were calculated analytically. Perturbation analysis was performed to estimate the covariances of the efficiencies calculated by the Monte Carlo method. Positive correlations higher than 0.8 were found in the uncertainties of the MCNP data for point-like sources. In the case of the regression method, the correlation matrix contains both positive and negative terms. The efficiencies and their covariances were estimated by both methods to take into account sample effects such as geometrical effect and gamma-ray self-absorption and found considerable differences in the cross sections and their uncertainties for reaction products quantified with low energy gammas. The efficiencies and covariances were clearly affected by the properties of the sample.","PeriodicalId":16526,"journal":{"name":"Journal of Nuclear Science and Technology","volume":"268 3","pages":"0"},"PeriodicalIF":1.5000,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Characterization of a HPGe detector response for activation cross section measurements: regression method versus Monte Carlo method\",\"authors\":\"Valentina Semkova, Naohiko Otuka, Arjan J. M. Plompen\",\"doi\":\"10.1080/00223131.2023.2278598\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The full energy peak efficiencies and covariances of a high purity germanium (HPGe) detector determined by the regression method and Monte Carlo method were compared. The impact of the obtained results on the neutron activation cross sections measured relative to monitor cross sections was determined. In the regression method, the efficiencies measured for a set of calibration point sources were analysed by the least-squares analysis. In the Monte Carlo method, the efficiencies for the calibration point sources were calculated by MCNP. The covariances of the efficiencies determined by the regression method were calculated analytically. Perturbation analysis was performed to estimate the covariances of the efficiencies calculated by the Monte Carlo method. Positive correlations higher than 0.8 were found in the uncertainties of the MCNP data for point-like sources. In the case of the regression method, the correlation matrix contains both positive and negative terms. The efficiencies and their covariances were estimated by both methods to take into account sample effects such as geometrical effect and gamma-ray self-absorption and found considerable differences in the cross sections and their uncertainties for reaction products quantified with low energy gammas. The efficiencies and covariances were clearly affected by the properties of the sample.\",\"PeriodicalId\":16526,\"journal\":{\"name\":\"Journal of Nuclear Science and Technology\",\"volume\":\"268 3\",\"pages\":\"0\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2023-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Nuclear Science and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/00223131.2023.2278598\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"NUCLEAR SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nuclear Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/00223131.2023.2278598","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NUCLEAR SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

比较了回归法和蒙特卡罗法测定的高纯锗(HPGe)探测器的全能量峰效率和协方差。测定了所得结果对中子活化截面相对于监测截面的影响。在回归方法中,采用最小二乘分析方法对一组标定点源的效率进行了分析。在蒙特卡罗方法中,利用MCNP计算了标定点源的效率。用回归法计算了各效率的协方差。用摄动分析估计了用蒙特卡罗方法计算的效率的协方差。对于点状源,MCNP数据的不确定性存在大于0.8的正相关。在回归方法的情况下,相关矩阵包含正负项。考虑到样品的几何效应和伽马射线自吸收等效应,两种方法的效率及其协方差都得到了估计,并发现用低能伽马量化的反应产物的截面及其不确定度有相当大的差异。效率和协方差明显受到样品性质的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Characterization of a HPGe detector response for activation cross section measurements: regression method versus Monte Carlo method
The full energy peak efficiencies and covariances of a high purity germanium (HPGe) detector determined by the regression method and Monte Carlo method were compared. The impact of the obtained results on the neutron activation cross sections measured relative to monitor cross sections was determined. In the regression method, the efficiencies measured for a set of calibration point sources were analysed by the least-squares analysis. In the Monte Carlo method, the efficiencies for the calibration point sources were calculated by MCNP. The covariances of the efficiencies determined by the regression method were calculated analytically. Perturbation analysis was performed to estimate the covariances of the efficiencies calculated by the Monte Carlo method. Positive correlations higher than 0.8 were found in the uncertainties of the MCNP data for point-like sources. In the case of the regression method, the correlation matrix contains both positive and negative terms. The efficiencies and their covariances were estimated by both methods to take into account sample effects such as geometrical effect and gamma-ray self-absorption and found considerable differences in the cross sections and their uncertainties for reaction products quantified with low energy gammas. The efficiencies and covariances were clearly affected by the properties of the sample.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Nuclear Science and Technology
Journal of Nuclear Science and Technology 工程技术-核科学技术
CiteScore
2.40
自引率
16.70%
发文量
116
审稿时长
2.3 months
期刊介绍: The Journal of Nuclear Science and Technology (JNST) publishes internationally peer-reviewed papers that contribute to the exchange of research, ideas and developments in the field of nuclear science and technology, to contribute peaceful and sustainable development of the World. JNST ’s broad scope covers a wide range of topics within its subject category, including but are not limited to: General Issues related to Nuclear Power Utilization: Philosophy and Ethics, Justice and Policy, International Relation, Economical and Sociological Aspects, Environmental Aspects, Education, Documentation and Database, Nuclear Non-Proliferation, Safeguard Radiation, Accelerator and Beam Technologies: Nuclear Physics, Nuclear Reaction for Engineering, Nuclear Data Measurement and Evaluation, Integral Verification/Validation and Benchmark on Nuclear Data, Radiation Behaviors and Shielding, Radiation Physics, Radiation Detection and Measurement, Accelerator and Beam Technology, Synchrotron Radiation, Medical Reactor and Accelerator, Neutron Source, Neutron Technology Nuclear Reactor Physics: Reactor Physics Experiments, Reactor Neutronics Design and Evaluation, Reactor Analysis, Neutron Transport Calculation, Reactor Dynamics Experiment, Nuclear Criticality Safety, Fuel Burnup and Nuclear Transmutation, Reactor Instrumentation and Control, Human-Machine System: Reactor Instrumentation and Control System, Human Factor, Control Room and Operator Interface Design, Remote Control, Robotics, Image Processing Thermal Hydraulics: Thermal Hydraulic Experiment and Analysis, Thermal Hydraulic Design, Thermal Hydraulics of Single/Two/Multi Phase Flow, Interactive Phenomena with Fluid, Measurement Technology...etc.
期刊最新文献
Towards safe, efficient long-reach manipulation in nuclear decommissioning: a case study on fuel debris retrieval at Fukushima Daiichi Application of methods for the chemical and radiometric monitoring of liquid radioactive waste processing Chemical interaction of CsOH vapor with UO2 and Fe-zr melt Ion exchange selectivity for protons by sodium ion-form crystalline silicotitanate Using Lorentz force flowmeter to measure the narrow channel flow that mimics lead-bismuth cooled reactors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1