Valentina Semkova, Naohiko Otuka, Arjan J. M. Plompen
{"title":"激活截面测量的HPGe探测器响应的表征:回归方法与蒙特卡罗方法","authors":"Valentina Semkova, Naohiko Otuka, Arjan J. M. Plompen","doi":"10.1080/00223131.2023.2278598","DOIUrl":null,"url":null,"abstract":"The full energy peak efficiencies and covariances of a high purity germanium (HPGe) detector determined by the regression method and Monte Carlo method were compared. The impact of the obtained results on the neutron activation cross sections measured relative to monitor cross sections was determined. In the regression method, the efficiencies measured for a set of calibration point sources were analysed by the least-squares analysis. In the Monte Carlo method, the efficiencies for the calibration point sources were calculated by MCNP. The covariances of the efficiencies determined by the regression method were calculated analytically. Perturbation analysis was performed to estimate the covariances of the efficiencies calculated by the Monte Carlo method. Positive correlations higher than 0.8 were found in the uncertainties of the MCNP data for point-like sources. In the case of the regression method, the correlation matrix contains both positive and negative terms. The efficiencies and their covariances were estimated by both methods to take into account sample effects such as geometrical effect and gamma-ray self-absorption and found considerable differences in the cross sections and their uncertainties for reaction products quantified with low energy gammas. The efficiencies and covariances were clearly affected by the properties of the sample.","PeriodicalId":16526,"journal":{"name":"Journal of Nuclear Science and Technology","volume":"268 3","pages":"0"},"PeriodicalIF":1.5000,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Characterization of a HPGe detector response for activation cross section measurements: regression method versus Monte Carlo method\",\"authors\":\"Valentina Semkova, Naohiko Otuka, Arjan J. M. Plompen\",\"doi\":\"10.1080/00223131.2023.2278598\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The full energy peak efficiencies and covariances of a high purity germanium (HPGe) detector determined by the regression method and Monte Carlo method were compared. The impact of the obtained results on the neutron activation cross sections measured relative to monitor cross sections was determined. In the regression method, the efficiencies measured for a set of calibration point sources were analysed by the least-squares analysis. In the Monte Carlo method, the efficiencies for the calibration point sources were calculated by MCNP. The covariances of the efficiencies determined by the regression method were calculated analytically. Perturbation analysis was performed to estimate the covariances of the efficiencies calculated by the Monte Carlo method. Positive correlations higher than 0.8 were found in the uncertainties of the MCNP data for point-like sources. In the case of the regression method, the correlation matrix contains both positive and negative terms. The efficiencies and their covariances were estimated by both methods to take into account sample effects such as geometrical effect and gamma-ray self-absorption and found considerable differences in the cross sections and their uncertainties for reaction products quantified with low energy gammas. The efficiencies and covariances were clearly affected by the properties of the sample.\",\"PeriodicalId\":16526,\"journal\":{\"name\":\"Journal of Nuclear Science and Technology\",\"volume\":\"268 3\",\"pages\":\"0\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2023-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Nuclear Science and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/00223131.2023.2278598\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"NUCLEAR SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nuclear Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/00223131.2023.2278598","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NUCLEAR SCIENCE & TECHNOLOGY","Score":null,"Total":0}
Characterization of a HPGe detector response for activation cross section measurements: regression method versus Monte Carlo method
The full energy peak efficiencies and covariances of a high purity germanium (HPGe) detector determined by the regression method and Monte Carlo method were compared. The impact of the obtained results on the neutron activation cross sections measured relative to monitor cross sections was determined. In the regression method, the efficiencies measured for a set of calibration point sources were analysed by the least-squares analysis. In the Monte Carlo method, the efficiencies for the calibration point sources were calculated by MCNP. The covariances of the efficiencies determined by the regression method were calculated analytically. Perturbation analysis was performed to estimate the covariances of the efficiencies calculated by the Monte Carlo method. Positive correlations higher than 0.8 were found in the uncertainties of the MCNP data for point-like sources. In the case of the regression method, the correlation matrix contains both positive and negative terms. The efficiencies and their covariances were estimated by both methods to take into account sample effects such as geometrical effect and gamma-ray self-absorption and found considerable differences in the cross sections and their uncertainties for reaction products quantified with low energy gammas. The efficiencies and covariances were clearly affected by the properties of the sample.
期刊介绍:
The Journal of Nuclear Science and Technology (JNST) publishes internationally peer-reviewed papers that contribute to the exchange of research, ideas and developments in the field of nuclear science and technology, to contribute peaceful and sustainable development of the World.
JNST ’s broad scope covers a wide range of topics within its subject category, including but are not limited to:
General Issues related to Nuclear Power Utilization: Philosophy and Ethics, Justice and Policy, International Relation, Economical and Sociological Aspects, Environmental Aspects, Education, Documentation and Database, Nuclear Non-Proliferation, Safeguard
Radiation, Accelerator and Beam Technologies: Nuclear Physics, Nuclear Reaction for Engineering, Nuclear Data Measurement and Evaluation, Integral Verification/Validation and Benchmark on Nuclear Data, Radiation Behaviors and Shielding, Radiation Physics, Radiation Detection and Measurement, Accelerator and Beam Technology, Synchrotron Radiation, Medical Reactor and Accelerator, Neutron Source, Neutron Technology
Nuclear Reactor Physics: Reactor Physics Experiments, Reactor Neutronics Design and Evaluation, Reactor Analysis, Neutron Transport Calculation, Reactor Dynamics Experiment, Nuclear Criticality Safety, Fuel Burnup and Nuclear Transmutation,
Reactor Instrumentation and Control, Human-Machine System: Reactor Instrumentation and Control System, Human Factor, Control Room and Operator Interface Design, Remote Control, Robotics, Image Processing
Thermal Hydraulics: Thermal Hydraulic Experiment and Analysis, Thermal Hydraulic Design, Thermal Hydraulics of Single/Two/Multi Phase Flow, Interactive Phenomena with Fluid, Measurement Technology...etc.