Gebray H. Alene, Ivan Depina, Vikas Thakur, Andrew Perkis, Oddbjørn Bruland
{"title":"QuickAware:黏土滑坡灾害快速感知的虚拟现实工具","authors":"Gebray H. Alene, Ivan Depina, Vikas Thakur, Andrew Perkis, Oddbjørn Bruland","doi":"10.1007/s11069-023-06274-6","DOIUrl":null,"url":null,"abstract":"Abstract Disaster emergency management is crucial for safeguarding lives and the environment in the face of natural and human-caused calamities, such as quick clay landslides. Disaster emergency management encompasses hazard identification, prevention, response, and recovery, most of which require knowledge and information acquired through training initiatives. Quick clay landslides pose a substantial hazard in regions like Scandinavia, Canada, Alaska, and Russia. With numerous historical incidents, knowledge-based awareness of quick clay landslide hazards is of paramount importance. In recent years, the area of application of virtual reality (VR) has grown tremendously from the entertainment industry to the military, to mental health, to hazard identification training and our daily lives. VR has been widely employed in hazard identification and prevention, safety training, evacuation, search and rescue, and damage identification of hazards. This study outlines the design, development, and implementation of QuickAware, a VR tool designed to create awareness of quick clay hazards. The development process of the tool started with a co-design approach where stakeholder experts were brought to collaborate in setting up VR scenarios and defining the VR environment contents. The contents were then conceptualized and translated into a VR experience. The novelty of the tool is that it immerses users in a realistic experience, allowing them to engage directly with the causes and consequences of quick clay landslide disasters which would be dangerous in real-life. The usability of the VR tool was examined by surveying 16 participants. The preliminary results of the survey indicated that the tool has a promising value in improving awareness creation for quick clay landslide hazards.","PeriodicalId":18792,"journal":{"name":"Natural Hazards","volume":"20 2","pages":"0"},"PeriodicalIF":3.3000,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"QuickAware: a virtual reality tool for quick clay landslide hazard awareness\",\"authors\":\"Gebray H. Alene, Ivan Depina, Vikas Thakur, Andrew Perkis, Oddbjørn Bruland\",\"doi\":\"10.1007/s11069-023-06274-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Disaster emergency management is crucial for safeguarding lives and the environment in the face of natural and human-caused calamities, such as quick clay landslides. Disaster emergency management encompasses hazard identification, prevention, response, and recovery, most of which require knowledge and information acquired through training initiatives. Quick clay landslides pose a substantial hazard in regions like Scandinavia, Canada, Alaska, and Russia. With numerous historical incidents, knowledge-based awareness of quick clay landslide hazards is of paramount importance. In recent years, the area of application of virtual reality (VR) has grown tremendously from the entertainment industry to the military, to mental health, to hazard identification training and our daily lives. VR has been widely employed in hazard identification and prevention, safety training, evacuation, search and rescue, and damage identification of hazards. This study outlines the design, development, and implementation of QuickAware, a VR tool designed to create awareness of quick clay hazards. The development process of the tool started with a co-design approach where stakeholder experts were brought to collaborate in setting up VR scenarios and defining the VR environment contents. The contents were then conceptualized and translated into a VR experience. The novelty of the tool is that it immerses users in a realistic experience, allowing them to engage directly with the causes and consequences of quick clay landslide disasters which would be dangerous in real-life. The usability of the VR tool was examined by surveying 16 participants. The preliminary results of the survey indicated that the tool has a promising value in improving awareness creation for quick clay landslide hazards.\",\"PeriodicalId\":18792,\"journal\":{\"name\":\"Natural Hazards\",\"volume\":\"20 2\",\"pages\":\"0\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2023-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Natural Hazards\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s11069-023-06274-6\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Natural Hazards","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s11069-023-06274-6","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
QuickAware: a virtual reality tool for quick clay landslide hazard awareness
Abstract Disaster emergency management is crucial for safeguarding lives and the environment in the face of natural and human-caused calamities, such as quick clay landslides. Disaster emergency management encompasses hazard identification, prevention, response, and recovery, most of which require knowledge and information acquired through training initiatives. Quick clay landslides pose a substantial hazard in regions like Scandinavia, Canada, Alaska, and Russia. With numerous historical incidents, knowledge-based awareness of quick clay landslide hazards is of paramount importance. In recent years, the area of application of virtual reality (VR) has grown tremendously from the entertainment industry to the military, to mental health, to hazard identification training and our daily lives. VR has been widely employed in hazard identification and prevention, safety training, evacuation, search and rescue, and damage identification of hazards. This study outlines the design, development, and implementation of QuickAware, a VR tool designed to create awareness of quick clay hazards. The development process of the tool started with a co-design approach where stakeholder experts were brought to collaborate in setting up VR scenarios and defining the VR environment contents. The contents were then conceptualized and translated into a VR experience. The novelty of the tool is that it immerses users in a realistic experience, allowing them to engage directly with the causes and consequences of quick clay landslide disasters which would be dangerous in real-life. The usability of the VR tool was examined by surveying 16 participants. The preliminary results of the survey indicated that the tool has a promising value in improving awareness creation for quick clay landslide hazards.
期刊介绍:
Natural Hazards is devoted to original research work on all aspects of natural hazards, the forecasting of catastrophic events, their risk management, and the nature of precursors of natural and/or technological hazards.
Although the origin of hazards can be different sources and systems (atmospheric, hydrologic, oceanographic, volcanologic, seismic, neotectonic), the environmental impacts are equally catastrophic. This circumstance warrants a tight interaction between the different scientific and operational disciplines, which should enhance the mitigation of hazards.
Hazards of interest to the journal are included in the following sections: general, atmospheric, climatological, oceanographic, storm surges, tsunamis, floods, snow, avalanches, landslides, erosion, earthquakes, volcanoes, man-made, technological, and risk assessment. The interactions between these hazards and society are also addressed in the journal and include risk governance, disaster response and preventive actions such as spatial planning and remedial measures.