{"title":"基于实践经验的动力顶板几何结构对长壁工作面失稳的影响","authors":"","doi":"10.24425/ams.2020.134132","DOIUrl":null,"url":null,"abstract":"This article focuses on the difficulties in ensuring longwall stability resulting from the wrong geometric form of the structure of powered support sections. The authors proved, based on the in-situ measurements and numerical calculations, that proper cooperation of the support with the rock mass requires correct determination of the support point for the hydraulic legs along the length of the canopy (ratio), as well as the inclination of the shield support of the section of the powered roof support. The lack of these two fundamental elements may lead to roof drops that directly impact the production results and safety of the people working underground. Another matter arising from the incorrect geometric form of the construction are the values of forces created in the node connecting the canopy with the caving shield, which can make a major contribution to limit the practical range of the operational height of the powered roof support (due to interaction of powered support with rockmass) in terms of the operating range offered by the manufacturer of the powered support. The operating of the powered roof support in some height ranges may hinder, or even in certain cases prevent, the operator of powered support, moving the shields and placing them with the proper geometry (ensuring parallelism between the canopy and the floor bases of the section).","PeriodicalId":55468,"journal":{"name":"Archives of Mining Sciences","volume":"331 3","pages":"0"},"PeriodicalIF":1.2000,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"The Influence of the Geometrical Construction of the Powered Roof Support on the Loss of a Longwall Working Stability Based on the Practical Experience\",\"authors\":\"\",\"doi\":\"10.24425/ams.2020.134132\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article focuses on the difficulties in ensuring longwall stability resulting from the wrong geometric form of the structure of powered support sections. The authors proved, based on the in-situ measurements and numerical calculations, that proper cooperation of the support with the rock mass requires correct determination of the support point for the hydraulic legs along the length of the canopy (ratio), as well as the inclination of the shield support of the section of the powered roof support. The lack of these two fundamental elements may lead to roof drops that directly impact the production results and safety of the people working underground. Another matter arising from the incorrect geometric form of the construction are the values of forces created in the node connecting the canopy with the caving shield, which can make a major contribution to limit the practical range of the operational height of the powered roof support (due to interaction of powered support with rockmass) in terms of the operating range offered by the manufacturer of the powered support. The operating of the powered roof support in some height ranges may hinder, or even in certain cases prevent, the operator of powered support, moving the shields and placing them with the proper geometry (ensuring parallelism between the canopy and the floor bases of the section).\",\"PeriodicalId\":55468,\"journal\":{\"name\":\"Archives of Mining Sciences\",\"volume\":\"331 3\",\"pages\":\"0\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archives of Mining Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24425/ams.2020.134132\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MINING & MINERAL PROCESSING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of Mining Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24425/ams.2020.134132","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MINING & MINERAL PROCESSING","Score":null,"Total":0}
The Influence of the Geometrical Construction of the Powered Roof Support on the Loss of a Longwall Working Stability Based on the Practical Experience
This article focuses on the difficulties in ensuring longwall stability resulting from the wrong geometric form of the structure of powered support sections. The authors proved, based on the in-situ measurements and numerical calculations, that proper cooperation of the support with the rock mass requires correct determination of the support point for the hydraulic legs along the length of the canopy (ratio), as well as the inclination of the shield support of the section of the powered roof support. The lack of these two fundamental elements may lead to roof drops that directly impact the production results and safety of the people working underground. Another matter arising from the incorrect geometric form of the construction are the values of forces created in the node connecting the canopy with the caving shield, which can make a major contribution to limit the practical range of the operational height of the powered roof support (due to interaction of powered support with rockmass) in terms of the operating range offered by the manufacturer of the powered support. The operating of the powered roof support in some height ranges may hinder, or even in certain cases prevent, the operator of powered support, moving the shields and placing them with the proper geometry (ensuring parallelism between the canopy and the floor bases of the section).
期刊介绍:
Archives of Mining Sciences (AMS) is concerned with original research, new developments and case studies in mining sciences and energy, civil engineering and environmental engineering. The journal provides an international forum for the publication of high quality research results in:
mining technologies,
mineral processing,
stability of mine workings,
mining machine science,
ventilation systems,
rock mechanics,
termodynamics,
underground storage of oil and gas,
mining and engineering geology,
geotechnical engineering,
tunnelling,
design and construction of tunnels,
design and construction on mining areas,
mining geodesy,
environmental protection in mining,
revitalisation of postindustrial areas.
Papers are welcomed on all relevant topics and especially on theoretical developments, analytical methods, numerical methods, rock testing, site investigation, and case studies.