改进基于内容的咖啡豆质量分割预测

Suhendro Yusuf Irianto
{"title":"改进基于内容的咖啡豆质量分割预测","authors":"Suhendro Yusuf Irianto","doi":"10.24843/lkjiti.2023.v14.i02.p04","DOIUrl":null,"url":null,"abstract":"Coffee has substantial economic value and is a key foreign exchange source for numerous nations, including Indonesia. Moreover, it is a primary livelihood for many of the country's farmers. Recently, there have been challenges in accurately predicting the quality of coffee beans, primarily due to time, inconsistency, and imprecision issues. Consequently, this study delves into the application of region-growing segmentation and content-based image retrieval (CBIR) techniques to enhance the prediction of coffee bean quality. The proposed hybrid approach, which combines region growing and CBIR methods, aims to improve the precision for forecasting cacao bean quality. Additionally, the research introduces an automated tool that employs these hybrid techniques for quality prediction. The study conducted experiments using a dataset of 400 premium and 400 low-quality coffee beans sourced from the University of Syiah Kuala in Indonesia. The results of the experiments demonstrate a commendable precision rate of 85.4%, showcasing significant improvement compared to certain previous studies.","PeriodicalId":31196,"journal":{"name":"Lontar Komputer","volume":"25 3","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Refining Content-Based Segmentation for Prediction of Coffee Bean Quality\",\"authors\":\"Suhendro Yusuf Irianto\",\"doi\":\"10.24843/lkjiti.2023.v14.i02.p04\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Coffee has substantial economic value and is a key foreign exchange source for numerous nations, including Indonesia. Moreover, it is a primary livelihood for many of the country's farmers. Recently, there have been challenges in accurately predicting the quality of coffee beans, primarily due to time, inconsistency, and imprecision issues. Consequently, this study delves into the application of region-growing segmentation and content-based image retrieval (CBIR) techniques to enhance the prediction of coffee bean quality. The proposed hybrid approach, which combines region growing and CBIR methods, aims to improve the precision for forecasting cacao bean quality. Additionally, the research introduces an automated tool that employs these hybrid techniques for quality prediction. The study conducted experiments using a dataset of 400 premium and 400 low-quality coffee beans sourced from the University of Syiah Kuala in Indonesia. The results of the experiments demonstrate a commendable precision rate of 85.4%, showcasing significant improvement compared to certain previous studies.\",\"PeriodicalId\":31196,\"journal\":{\"name\":\"Lontar Komputer\",\"volume\":\"25 3\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Lontar Komputer\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24843/lkjiti.2023.v14.i02.p04\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lontar Komputer","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24843/lkjiti.2023.v14.i02.p04","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

咖啡具有巨大的经济价值,是包括印度尼西亚在内的许多国家的主要外汇来源。此外,这也是该国许多农民的主要生计。最近,在准确预测咖啡豆质量方面存在挑战,主要是由于时间、不一致和不精确的问题。因此,本研究探讨了区域增长分割和基于内容的图像检索(CBIR)技术在咖啡豆品质预测中的应用。该方法将区域种植法与CBIR法相结合,旨在提高可可豆品质的预测精度。此外,该研究还介绍了一种采用这些混合技术进行质量预测的自动化工具。该研究使用了来自印度尼西亚锡亚吉隆坡大学的400颗优质和400颗劣质咖啡豆的数据集进行了实验。实验结果表明,该方法的准确率达到了85.4%,与以往的一些研究相比有了显著的提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Refining Content-Based Segmentation for Prediction of Coffee Bean Quality
Coffee has substantial economic value and is a key foreign exchange source for numerous nations, including Indonesia. Moreover, it is a primary livelihood for many of the country's farmers. Recently, there have been challenges in accurately predicting the quality of coffee beans, primarily due to time, inconsistency, and imprecision issues. Consequently, this study delves into the application of region-growing segmentation and content-based image retrieval (CBIR) techniques to enhance the prediction of coffee bean quality. The proposed hybrid approach, which combines region growing and CBIR methods, aims to improve the precision for forecasting cacao bean quality. Additionally, the research introduces an automated tool that employs these hybrid techniques for quality prediction. The study conducted experiments using a dataset of 400 premium and 400 low-quality coffee beans sourced from the University of Syiah Kuala in Indonesia. The results of the experiments demonstrate a commendable precision rate of 85.4%, showcasing significant improvement compared to certain previous studies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
14
审稿时长
24 weeks
期刊最新文献
The Optimization of the ARP Poisoning Attack Detection Model Using a Similar Approach Based on NetFlow Analysis Refining Content-Based Segmentation for Prediction of Coffee Bean Quality Comparing Support Vector Machine and Naïve Bayes Methods with A Selection of Fast Correlation Based Filter Features in Detecting Parkinson's Disease Digital Transformation Of Subak Management In Bali Through GIS Implementation Nowcasting the Number of Airplane Passengers at Ngurah Rai Airport Using Google Trends Data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1