{"title":"双电平自适应测试电池","authors":"Wim J. van der Linden, Luping Niu, Seung W. Choi","doi":"10.3102/10769986231209447","DOIUrl":null,"url":null,"abstract":"A test battery with two different levels of adaptation is presented: a within-subtest level for the selection of the items in the subtests and a between-subtest level to move from one subtest to the next. The battery runs on a two-level model consisting of a regular response model for each of the subtests extended with a second level for the joint distribution of their abilities. The presentation of the model is followed by an optimized MCMC algorithm to update the posterior distribution of each of its ability parameters, select the items to Bayesian optimality, and adaptively move from one subtest to the next. Thanks to extremely rapid convergence of the Markov chain and simple posterior calculations, the algorithm can be used in real-world applications without any noticeable latency. Finally, an empirical study with a battery of short diagnostic subtests is shown to yield score accuracies close to traditional one-level adaptive testing with subtests of double lengths.","PeriodicalId":48001,"journal":{"name":"Journal of Educational and Behavioral Statistics","volume":"43 9","pages":"0"},"PeriodicalIF":1.9000,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Two-Level Adaptive Test Battery\",\"authors\":\"Wim J. van der Linden, Luping Niu, Seung W. Choi\",\"doi\":\"10.3102/10769986231209447\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A test battery with two different levels of adaptation is presented: a within-subtest level for the selection of the items in the subtests and a between-subtest level to move from one subtest to the next. The battery runs on a two-level model consisting of a regular response model for each of the subtests extended with a second level for the joint distribution of their abilities. The presentation of the model is followed by an optimized MCMC algorithm to update the posterior distribution of each of its ability parameters, select the items to Bayesian optimality, and adaptively move from one subtest to the next. Thanks to extremely rapid convergence of the Markov chain and simple posterior calculations, the algorithm can be used in real-world applications without any noticeable latency. Finally, an empirical study with a battery of short diagnostic subtests is shown to yield score accuracies close to traditional one-level adaptive testing with subtests of double lengths.\",\"PeriodicalId\":48001,\"journal\":{\"name\":\"Journal of Educational and Behavioral Statistics\",\"volume\":\"43 9\",\"pages\":\"0\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Educational and Behavioral Statistics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3102/10769986231209447\",\"RegionNum\":3,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"EDUCATION & EDUCATIONAL RESEARCH\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Educational and Behavioral Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3102/10769986231209447","RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"EDUCATION & EDUCATIONAL RESEARCH","Score":null,"Total":0}
A test battery with two different levels of adaptation is presented: a within-subtest level for the selection of the items in the subtests and a between-subtest level to move from one subtest to the next. The battery runs on a two-level model consisting of a regular response model for each of the subtests extended with a second level for the joint distribution of their abilities. The presentation of the model is followed by an optimized MCMC algorithm to update the posterior distribution of each of its ability parameters, select the items to Bayesian optimality, and adaptively move from one subtest to the next. Thanks to extremely rapid convergence of the Markov chain and simple posterior calculations, the algorithm can be used in real-world applications without any noticeable latency. Finally, an empirical study with a battery of short diagnostic subtests is shown to yield score accuracies close to traditional one-level adaptive testing with subtests of double lengths.
期刊介绍:
Journal of Educational and Behavioral Statistics, sponsored jointly by the American Educational Research Association and the American Statistical Association, publishes articles that are original and provide methods that are useful to those studying problems and issues in educational or behavioral research. Typical papers introduce new methods of analysis. Critical reviews of current practice, tutorial presentations of less well known methods, and novel applications of already-known methods are also of interest. Papers discussing statistical techniques without specific educational or behavioral interest or focusing on substantive results without developing new statistical methods or models or making novel use of existing methods have lower priority. Simulation studies, either to demonstrate properties of an existing method or to compare several existing methods (without providing a new method), also have low priority. The Journal of Educational and Behavioral Statistics provides an outlet for papers that are original and provide methods that are useful to those studying problems and issues in educational or behavioral research. Typical papers introduce new methods of analysis, provide properties of these methods, and an example of use in education or behavioral research. Critical reviews of current practice, tutorial presentations of less well known methods, and novel applications of already-known methods are also sometimes accepted. Papers discussing statistical techniques without specific educational or behavioral interest or focusing on substantive results without developing new statistical methods or models or making novel use of existing methods have lower priority. Simulation studies, either to demonstrate properties of an existing method or to compare several existing methods (without providing a new method), also have low priority.