{"title":"模块化建设项目风险管理的多准则决策模型","authors":"Sabah Khodabocus, Senem Seyis","doi":"10.1080/15623599.2023.2276649","DOIUrl":null,"url":null,"abstract":"AbstractThe modular sector needs a precise guide to determine the most efficient risk management approaches. The main research objective of this study is to develop a multi-criteria decision-making model to find the most efficient risk management approach according to the relevant risk criteria. The risk criteria and risk management approaches for modular construction projects were also identified and classified within this scope. A systematic literature review, semi-structured interviews, and open-ended questionnaires were performed for identification and classification purposes. For ranking and quantifying the identified risks and risk approaches, as well as developing the decision-making model, the Delphi method and the Analytical Hierarchy Process (AHP) were conducted. A two-round Delphi method, with eleven experts, was conducted to achieve efficient performance scores of the identified risk management approaches. The percentage standard deviation decreased, Relative Importance Index (RII), Cronbach’s alpha, and Kendall’s coefficient of concordance (Kendall’s W) were calculated to ensure the outputs’ reliability, validity, and agreement level. The AHP method opted to quantify the Delphi method outputs, solve the multi-criteria decision-making process, and develop the multi-criteria decision-making model for risk management of modular construction projects. Triangulation results show that the critical risk categories are supply chain, health and safety, stakeholders, and governmental support. Lean principles such as the Last Planner System, Value Stream Mapping, Just in Time, and Kaizen are top-rated risk management approaches. This research’s novelty is identifying and analyzing crucial risk categories, providing the relevant risk management approaches ranked according to efficiency performance, and presenting a decision-making model as a guideline for risk management of modular construction projects.Keywords: Modular constructionrisk managementmulti-criteria decision-makingoff-site constructiondelphi methodconstruction management; analytic hierarchy process Disclosure statementNo potential conflict of interest was reported by the author(s).Data availability statementThe data used in this study with unique DOIs for the qualitative and quantitative analysis spreadsheets are available from the corresponding authors upon reasonable request.","PeriodicalId":47375,"journal":{"name":"International Journal of Construction Management","volume":"33 20","pages":"0"},"PeriodicalIF":3.4000,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi-criteria decision-making model for risk management in modular construction projects\",\"authors\":\"Sabah Khodabocus, Senem Seyis\",\"doi\":\"10.1080/15623599.2023.2276649\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"AbstractThe modular sector needs a precise guide to determine the most efficient risk management approaches. The main research objective of this study is to develop a multi-criteria decision-making model to find the most efficient risk management approach according to the relevant risk criteria. The risk criteria and risk management approaches for modular construction projects were also identified and classified within this scope. A systematic literature review, semi-structured interviews, and open-ended questionnaires were performed for identification and classification purposes. For ranking and quantifying the identified risks and risk approaches, as well as developing the decision-making model, the Delphi method and the Analytical Hierarchy Process (AHP) were conducted. A two-round Delphi method, with eleven experts, was conducted to achieve efficient performance scores of the identified risk management approaches. The percentage standard deviation decreased, Relative Importance Index (RII), Cronbach’s alpha, and Kendall’s coefficient of concordance (Kendall’s W) were calculated to ensure the outputs’ reliability, validity, and agreement level. The AHP method opted to quantify the Delphi method outputs, solve the multi-criteria decision-making process, and develop the multi-criteria decision-making model for risk management of modular construction projects. Triangulation results show that the critical risk categories are supply chain, health and safety, stakeholders, and governmental support. Lean principles such as the Last Planner System, Value Stream Mapping, Just in Time, and Kaizen are top-rated risk management approaches. This research’s novelty is identifying and analyzing crucial risk categories, providing the relevant risk management approaches ranked according to efficiency performance, and presenting a decision-making model as a guideline for risk management of modular construction projects.Keywords: Modular constructionrisk managementmulti-criteria decision-makingoff-site constructiondelphi methodconstruction management; analytic hierarchy process Disclosure statementNo potential conflict of interest was reported by the author(s).Data availability statementThe data used in this study with unique DOIs for the qualitative and quantitative analysis spreadsheets are available from the corresponding authors upon reasonable request.\",\"PeriodicalId\":47375,\"journal\":{\"name\":\"International Journal of Construction Management\",\"volume\":\"33 20\",\"pages\":\"0\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2023-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Construction Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/15623599.2023.2276649\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Construction Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/15623599.2023.2276649","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
Multi-criteria decision-making model for risk management in modular construction projects
AbstractThe modular sector needs a precise guide to determine the most efficient risk management approaches. The main research objective of this study is to develop a multi-criteria decision-making model to find the most efficient risk management approach according to the relevant risk criteria. The risk criteria and risk management approaches for modular construction projects were also identified and classified within this scope. A systematic literature review, semi-structured interviews, and open-ended questionnaires were performed for identification and classification purposes. For ranking and quantifying the identified risks and risk approaches, as well as developing the decision-making model, the Delphi method and the Analytical Hierarchy Process (AHP) were conducted. A two-round Delphi method, with eleven experts, was conducted to achieve efficient performance scores of the identified risk management approaches. The percentage standard deviation decreased, Relative Importance Index (RII), Cronbach’s alpha, and Kendall’s coefficient of concordance (Kendall’s W) were calculated to ensure the outputs’ reliability, validity, and agreement level. The AHP method opted to quantify the Delphi method outputs, solve the multi-criteria decision-making process, and develop the multi-criteria decision-making model for risk management of modular construction projects. Triangulation results show that the critical risk categories are supply chain, health and safety, stakeholders, and governmental support. Lean principles such as the Last Planner System, Value Stream Mapping, Just in Time, and Kaizen are top-rated risk management approaches. This research’s novelty is identifying and analyzing crucial risk categories, providing the relevant risk management approaches ranked according to efficiency performance, and presenting a decision-making model as a guideline for risk management of modular construction projects.Keywords: Modular constructionrisk managementmulti-criteria decision-makingoff-site constructiondelphi methodconstruction management; analytic hierarchy process Disclosure statementNo potential conflict of interest was reported by the author(s).Data availability statementThe data used in this study with unique DOIs for the qualitative and quantitative analysis spreadsheets are available from the corresponding authors upon reasonable request.
期刊介绍:
The International Journal of Construction Management publishes quality papers aiming to advance the knowledge of construction management. The Journal is devoted to the publication of original research including, but not limited to the following: Sustainable Construction (Green building; Carbon emission; Waste management; Energy saving) Construction life cycle management Construction informatics (Building information modelling; Information communication technology; Virtual design and construction) Smart construction (Robotics; Artificial intelligence; 3D printing) Big data for construction Legal issues in construction Public policies for construction Building and Infrastructures Health, safety and well-being in construction Risk management in construction Disaster management and resilience Construction procurement Construction management education