由双功能碳量子点修饰的异质花状NiO/Co3O4微球作为高能和功率密度混合超级电容器的电池型阴极

Xinru Liu, Yirong Zhu, Zhihui Lu, Jin Xiao, Guoqiang Zou, Hongshuai Hou, Xiaobo Ji
{"title":"由双功能碳量子点修饰的异质花状NiO/Co3O4微球作为高能和功率密度混合超级电容器的电池型阴极","authors":"Xinru Liu,&nbsp;Yirong Zhu,&nbsp;Zhihui Lu,&nbsp;Jin Xiao,&nbsp;Guoqiang Zou,&nbsp;Hongshuai Hou,&nbsp;Xiaobo Ji","doi":"10.1002/cnl2.97","DOIUrl":null,"url":null,"abstract":"<p>Hybrid supercapacitors (HSCs) comprising a battery-type cathode and capacitive anode have recently become a research hotspot. Nevertheless, the low capacity utilization, poor kinetic behavior, and unstable structure of a single battery-type oxide cathode restrict the overall performance of the device. Herein, the carbon quantum dots (CQDs) modified NiO/Co<sub>3</sub>O<sub>4</sub> heterostructured flower-like microspheres are constructed, and enhanced specific capacity, rate capability, and cycling performance are achieved when used as the cathode for HSCs. This is attributed to the fact that the modification of bifunctional CQDs as size regulators and conductive agents and the construction of heterostructure can not only improve the specific surface area and provide more electroactive sites, thereby enhancing the charge storage performance but also regulate the electronic structure and boost the interface charge transfer capability and electronic conductivity, thereby boosting the reaction kinetics and cycle stability. The enhanced electrochemical kinetic behavior is revealed by electrochemical kinetic analyses based on cyclic voltammetry, electrochemical impedance spectroscopy tests and density functional theory calculations. Meanwhile, the electrochemical reaction process and energy storage mechanism are illustrated by ex-situ X-ray diffraction and X-ray photoelectron spectroscopy characterizations. Furthermore, an HSC is further constructed using the CQDs/NiO/Co<sub>3</sub>O<sub>4</sub> heterostructured flower-like microspheres as the cathode, simultaneously achieving high energy density (40.9 Wh kg<sup>−1</sup>), high power density (24 kW kg<sup>−1</sup>), and splendid cyclic stability (94.2% capacity retention after 5000 cycles at 10 A g<sup>−1</sup>). These synergistic modification strategies of bifunctional CQDs modification and heterostructure design provide a valuable direction for the design and development of HSCs with both high energy density and high power density.</p>","PeriodicalId":100214,"journal":{"name":"Carbon Neutralization","volume":"2 6","pages":"721-737"},"PeriodicalIF":0.0000,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cnl2.97","citationCount":"0","resultStr":"{\"title\":\"Heterostructured flower-like NiO/Co3O4 microspheres modified by bifunctional carbon quantum dots as a battery-type cathode for high energy and power density hybrid supercapacitors\",\"authors\":\"Xinru Liu,&nbsp;Yirong Zhu,&nbsp;Zhihui Lu,&nbsp;Jin Xiao,&nbsp;Guoqiang Zou,&nbsp;Hongshuai Hou,&nbsp;Xiaobo Ji\",\"doi\":\"10.1002/cnl2.97\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Hybrid supercapacitors (HSCs) comprising a battery-type cathode and capacitive anode have recently become a research hotspot. Nevertheless, the low capacity utilization, poor kinetic behavior, and unstable structure of a single battery-type oxide cathode restrict the overall performance of the device. Herein, the carbon quantum dots (CQDs) modified NiO/Co<sub>3</sub>O<sub>4</sub> heterostructured flower-like microspheres are constructed, and enhanced specific capacity, rate capability, and cycling performance are achieved when used as the cathode for HSCs. This is attributed to the fact that the modification of bifunctional CQDs as size regulators and conductive agents and the construction of heterostructure can not only improve the specific surface area and provide more electroactive sites, thereby enhancing the charge storage performance but also regulate the electronic structure and boost the interface charge transfer capability and electronic conductivity, thereby boosting the reaction kinetics and cycle stability. The enhanced electrochemical kinetic behavior is revealed by electrochemical kinetic analyses based on cyclic voltammetry, electrochemical impedance spectroscopy tests and density functional theory calculations. Meanwhile, the electrochemical reaction process and energy storage mechanism are illustrated by ex-situ X-ray diffraction and X-ray photoelectron spectroscopy characterizations. Furthermore, an HSC is further constructed using the CQDs/NiO/Co<sub>3</sub>O<sub>4</sub> heterostructured flower-like microspheres as the cathode, simultaneously achieving high energy density (40.9 Wh kg<sup>−1</sup>), high power density (24 kW kg<sup>−1</sup>), and splendid cyclic stability (94.2% capacity retention after 5000 cycles at 10 A g<sup>−1</sup>). These synergistic modification strategies of bifunctional CQDs modification and heterostructure design provide a valuable direction for the design and development of HSCs with both high energy density and high power density.</p>\",\"PeriodicalId\":100214,\"journal\":{\"name\":\"Carbon Neutralization\",\"volume\":\"2 6\",\"pages\":\"721-737\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cnl2.97\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Carbon Neutralization\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cnl2.97\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon Neutralization","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cnl2.97","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

摘要由电池型阴极和电容性阳极组成的混合超级电容器(hsc)是近年来研究的热点。然而,单一电池型氧化物阴极的低容量利用率、不良的动力学行为和不稳定的结构限制了器件的整体性能。在此,碳量子点(CQDs)修饰的NiO/Co 3 O 4异质结构花状微球作为hsc的阴极,获得了更高的比容量、倍率和循环性能。这是由于双功能CQDs作为尺寸调节剂和导电剂的改性以及异质结构的构建不仅可以提高比表面积,提供更多的电活性位点,从而提高电荷存储性能,而且可以调节电子结构,提高界面电荷转移能力和电子导电性,从而提高反应动力学和循环稳定性。基于循环伏安法、电化学阻抗谱测试和密度泛函理论计算的电化学动力学分析揭示了增强的电化学动力学行为。同时,通过X射线衍射和X射线光电子能谱表征阐明了电化学反应过程和能量储存机理。此外,利用CQDs/NiO/ co3o4异质结构花状微球作为阴极构建了HSC,同时具有高能量密度(40.9 Wh kg−1)、高功率密度(24 kW kg−1)和出色的循环稳定性(在10 A g−1下循环5000次后容量保持率为94.2%)。这些双功能CQDs修饰和异质结构设计的协同修饰策略为高能量密度和高功率密度的hsc的设计和开发提供了有价值的方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Heterostructured flower-like NiO/Co3O4 microspheres modified by bifunctional carbon quantum dots as a battery-type cathode for high energy and power density hybrid supercapacitors

Hybrid supercapacitors (HSCs) comprising a battery-type cathode and capacitive anode have recently become a research hotspot. Nevertheless, the low capacity utilization, poor kinetic behavior, and unstable structure of a single battery-type oxide cathode restrict the overall performance of the device. Herein, the carbon quantum dots (CQDs) modified NiO/Co3O4 heterostructured flower-like microspheres are constructed, and enhanced specific capacity, rate capability, and cycling performance are achieved when used as the cathode for HSCs. This is attributed to the fact that the modification of bifunctional CQDs as size regulators and conductive agents and the construction of heterostructure can not only improve the specific surface area and provide more electroactive sites, thereby enhancing the charge storage performance but also regulate the electronic structure and boost the interface charge transfer capability and electronic conductivity, thereby boosting the reaction kinetics and cycle stability. The enhanced electrochemical kinetic behavior is revealed by electrochemical kinetic analyses based on cyclic voltammetry, electrochemical impedance spectroscopy tests and density functional theory calculations. Meanwhile, the electrochemical reaction process and energy storage mechanism are illustrated by ex-situ X-ray diffraction and X-ray photoelectron spectroscopy characterizations. Furthermore, an HSC is further constructed using the CQDs/NiO/Co3O4 heterostructured flower-like microspheres as the cathode, simultaneously achieving high energy density (40.9 Wh kg−1), high power density (24 kW kg−1), and splendid cyclic stability (94.2% capacity retention after 5000 cycles at 10 A g−1). These synergistic modification strategies of bifunctional CQDs modification and heterostructure design provide a valuable direction for the design and development of HSCs with both high energy density and high power density.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Issue Information Front Cover: Carbon Neutralization, Volume 3, Issue 6, November 2024 Inside Back Cover Image: Carbon Neutralization, Volume 3, Issue 6, November 2024 Back Cover Image: Carbon Neutralization, Volume 3, Issue 6, November 2024 A chronicle of titanium niobium oxide materials for high-performance lithium-ion batteries: From laboratory to industry
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1