C. David Remy, Zachary Brei, Daniel Bruder, Jan Remy, Keith Buffinton, R. Brent Gillespie
{"title":"“流体雅可比矩阵”:流体驱动软机器人的力-运动关系建模","authors":"C. David Remy, Zachary Brei, Daniel Bruder, Jan Remy, Keith Buffinton, R. Brent Gillespie","doi":"10.1177/02783649231210592","DOIUrl":null,"url":null,"abstract":"In this paper, we introduce the concept of the Fluid Jacobian, which provides a description of the power transmission that operates between the fluid and mechanical domains in soft robotic systems. It can be understood as a generalization of the traditional kinematic Jacobian that relates the joint space torques and velocities to the task space forces and velocities of a robot. In a similar way, the Fluid Jacobian relates fluid pressure to task space forces and fluid flow to task space velocities. In addition, the Fluid Jacobian can also be regarded as a generalization of the piston cross-sectional area in a fluid-driven cylinder that extends to complex geometries and multiple dimensions. In the following, we present a theoretical derivation of this framework, focus on important special cases, and illustrate the meaning and practical applicability of the Fluid Jacobian in four brief examples.","PeriodicalId":54942,"journal":{"name":"International Journal of Robotics Research","volume":"21 20","pages":"0"},"PeriodicalIF":7.5000,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The “Fluid Jacobian”: Modeling force-motion relationships in fluid-driven soft robots\",\"authors\":\"C. David Remy, Zachary Brei, Daniel Bruder, Jan Remy, Keith Buffinton, R. Brent Gillespie\",\"doi\":\"10.1177/02783649231210592\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we introduce the concept of the Fluid Jacobian, which provides a description of the power transmission that operates between the fluid and mechanical domains in soft robotic systems. It can be understood as a generalization of the traditional kinematic Jacobian that relates the joint space torques and velocities to the task space forces and velocities of a robot. In a similar way, the Fluid Jacobian relates fluid pressure to task space forces and fluid flow to task space velocities. In addition, the Fluid Jacobian can also be regarded as a generalization of the piston cross-sectional area in a fluid-driven cylinder that extends to complex geometries and multiple dimensions. In the following, we present a theoretical derivation of this framework, focus on important special cases, and illustrate the meaning and practical applicability of the Fluid Jacobian in four brief examples.\",\"PeriodicalId\":54942,\"journal\":{\"name\":\"International Journal of Robotics Research\",\"volume\":\"21 20\",\"pages\":\"0\"},\"PeriodicalIF\":7.5000,\"publicationDate\":\"2023-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Robotics Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/02783649231210592\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ROBOTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Robotics Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/02783649231210592","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ROBOTICS","Score":null,"Total":0}
The “Fluid Jacobian”: Modeling force-motion relationships in fluid-driven soft robots
In this paper, we introduce the concept of the Fluid Jacobian, which provides a description of the power transmission that operates between the fluid and mechanical domains in soft robotic systems. It can be understood as a generalization of the traditional kinematic Jacobian that relates the joint space torques and velocities to the task space forces and velocities of a robot. In a similar way, the Fluid Jacobian relates fluid pressure to task space forces and fluid flow to task space velocities. In addition, the Fluid Jacobian can also be regarded as a generalization of the piston cross-sectional area in a fluid-driven cylinder that extends to complex geometries and multiple dimensions. In the following, we present a theoretical derivation of this framework, focus on important special cases, and illustrate the meaning and practical applicability of the Fluid Jacobian in four brief examples.
期刊介绍:
The International Journal of Robotics Research (IJRR) has been a leading peer-reviewed publication in the field for over two decades. It holds the distinction of being the first scholarly journal dedicated to robotics research.
IJRR presents cutting-edge and thought-provoking original research papers, articles, and reviews that delve into groundbreaking trends, technical advancements, and theoretical developments in robotics. Renowned scholars and practitioners contribute to its content, offering their expertise and insights. This journal covers a wide range of topics, going beyond narrow technical advancements to encompass various aspects of robotics.
The primary aim of IJRR is to publish work that has lasting value for the scientific and technological advancement of the field. Only original, robust, and practical research that can serve as a foundation for further progress is considered for publication. The focus is on producing content that will remain valuable and relevant over time.
In summary, IJRR stands as a prestigious publication that drives innovation and knowledge in robotics research.