水草提取物减轻h2o2处理的视网膜色素上皮细胞和高脂饮食小鼠视网膜的氧化应激和炎症

Minzhuo Liu, Shuiqing Wu, Yi Wu, Jie Zhang, Jun Chen, Xucong Peng, Qiusheng Yang, Zhoujin Tan, Zhihong Zeng
{"title":"水草提取物减轻h2o2处理的视网膜色素上皮细胞和高脂饮食小鼠视网膜的氧化应激和炎症","authors":"Minzhuo Liu, Shuiqing Wu, Yi Wu, Jie Zhang, Jun Chen, Xucong Peng, Qiusheng Yang, Zhoujin Tan, Zhihong Zeng","doi":"10.31083/j.fbl2811279","DOIUrl":null,"url":null,"abstract":"Background: Age-related macular degeneration (AMD) is the most common cause of visual disorders in the aged population and is characterized by the formation of retinal pigment epithelium (RPE) deposits and dysfunction/death of the RPE and photoreceptors. It is supposed that both oxidative stress and inflammation play a critical role in the pathogenesis of AMD. The development of therapeutic strategies against oxidative stress and inflammation in AMD is urgently needed. Rubus suavissimus S. Lee (RS), a medicinal plant growing in the southwest region of China, has been used as an herbal tea and medicine for various diseases. Methods: In this project, we evaluate the therapeutic potential of RS extract for AMD. We prepared RS extracts from dried leaves, which contained the main functional compounds. Results: RS extract significantly increased cell viability, upregulated the expression of antioxidant genes, lowered the generation of malondialdehyde and reactive oxygen species, and suppressed inflammation in H2O2-treated human RPE cells. In the in vivo study, treatment with RS extract attenuated body weight gain, lowered cholesterol and triglyceride levels in the liver and serum, increased antioxidant capacity, and alleviated inflammation in the retina and RPE/choroid of mice fed a high-fat diet. Conclusions: Our findings suggest that RS extract offers therapeutic potential for treating AMD patients.","PeriodicalId":12366,"journal":{"name":"Frontiers in bioscience","volume":"68 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rubus suavissimus S. Lee Extract Alleviates Oxidative Stress and Inflammation in H2O2-Treated Retinal Pigment Epithelial Cells and in High-Fat Diet-Fed Mouse Retinas\",\"authors\":\"Minzhuo Liu, Shuiqing Wu, Yi Wu, Jie Zhang, Jun Chen, Xucong Peng, Qiusheng Yang, Zhoujin Tan, Zhihong Zeng\",\"doi\":\"10.31083/j.fbl2811279\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Background: Age-related macular degeneration (AMD) is the most common cause of visual disorders in the aged population and is characterized by the formation of retinal pigment epithelium (RPE) deposits and dysfunction/death of the RPE and photoreceptors. It is supposed that both oxidative stress and inflammation play a critical role in the pathogenesis of AMD. The development of therapeutic strategies against oxidative stress and inflammation in AMD is urgently needed. Rubus suavissimus S. Lee (RS), a medicinal plant growing in the southwest region of China, has been used as an herbal tea and medicine for various diseases. Methods: In this project, we evaluate the therapeutic potential of RS extract for AMD. We prepared RS extracts from dried leaves, which contained the main functional compounds. Results: RS extract significantly increased cell viability, upregulated the expression of antioxidant genes, lowered the generation of malondialdehyde and reactive oxygen species, and suppressed inflammation in H2O2-treated human RPE cells. In the in vivo study, treatment with RS extract attenuated body weight gain, lowered cholesterol and triglyceride levels in the liver and serum, increased antioxidant capacity, and alleviated inflammation in the retina and RPE/choroid of mice fed a high-fat diet. Conclusions: Our findings suggest that RS extract offers therapeutic potential for treating AMD patients.\",\"PeriodicalId\":12366,\"journal\":{\"name\":\"Frontiers in bioscience\",\"volume\":\"68 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in bioscience\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31083/j.fbl2811279\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in bioscience","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31083/j.fbl2811279","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

背景:年龄相关性黄斑变性(AMD)是老年人视力障碍的最常见原因,其特征是视网膜色素上皮(RPE)沉积的形成以及RPE和光感受器的功能障碍/死亡。我们认为氧化应激和炎症在AMD的发病过程中都起着关键作用。目前迫切需要开发抗氧化应激和炎症的治疗策略。山菖蒲(Rubus suavissimus S. Lee, RS)是一种生长在中国西南地区的药用植物,已被用作凉茶和多种疾病的药物。方法:在本项目中,我们评估了RS提取物对AMD的治疗潜力。我们从干叶中提取了含有主要功能化合物的RS提取物。结果:RS提取物显著提高人RPE细胞活力,上调抗氧化基因的表达,降低丙二醛和活性氧的生成,抑制h2o2处理的RPE细胞的炎症反应。在体内研究中,使用RS提取物可以减轻高脂肪饮食小鼠的体重增加,降低肝脏和血清中的胆固醇和甘油三酯水平,提高抗氧化能力,减轻视网膜和RPE/脉管炎的炎症。结论:我们的研究结果表明,RS提取物具有治疗AMD患者的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Rubus suavissimus S. Lee Extract Alleviates Oxidative Stress and Inflammation in H2O2-Treated Retinal Pigment Epithelial Cells and in High-Fat Diet-Fed Mouse Retinas
Background: Age-related macular degeneration (AMD) is the most common cause of visual disorders in the aged population and is characterized by the formation of retinal pigment epithelium (RPE) deposits and dysfunction/death of the RPE and photoreceptors. It is supposed that both oxidative stress and inflammation play a critical role in the pathogenesis of AMD. The development of therapeutic strategies against oxidative stress and inflammation in AMD is urgently needed. Rubus suavissimus S. Lee (RS), a medicinal plant growing in the southwest region of China, has been used as an herbal tea and medicine for various diseases. Methods: In this project, we evaluate the therapeutic potential of RS extract for AMD. We prepared RS extracts from dried leaves, which contained the main functional compounds. Results: RS extract significantly increased cell viability, upregulated the expression of antioxidant genes, lowered the generation of malondialdehyde and reactive oxygen species, and suppressed inflammation in H2O2-treated human RPE cells. In the in vivo study, treatment with RS extract attenuated body weight gain, lowered cholesterol and triglyceride levels in the liver and serum, increased antioxidant capacity, and alleviated inflammation in the retina and RPE/choroid of mice fed a high-fat diet. Conclusions: Our findings suggest that RS extract offers therapeutic potential for treating AMD patients.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Differential Expression Analysis Based on Ensemble Strategy on miRNA Profiles of Kidney Clear Cell Carcinoma Endothelial Progenitor-Cell-Derived Exosomes Induced by Astragaloside IV Accelerate Type I Diabetic-wound Healing via the PI3K/AKT/mTOR Pathway in Rats Anoikis Patterns in Cervical Cancer: Identification of Subgroups and Construction of a Novel Risk Model for Predicting Prognosis and Immune Response Identification of Whole-Blood DNA Methylation Signatures and Rules Associated with COVID-19 Severity Preconditioning of Mesenchymal Stem Cells with Electromagnetic Fields and Its Impact on Biological Responses and “Fate”—Potential Use in Therapeutic Applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1