{"title":"基于稀疏正则化的时间图像去噪方法","authors":"Xin Wang, Xiaogang Dong","doi":"10.1142/s0219467825500093","DOIUrl":null,"url":null,"abstract":"The blurring of texture edges often occurs during image data transmission and acquisition. To ensure the detailed clarity of the drag-time images, we propose a time image de-noising method based on sparse regularization. First, the image pixel sparsity index is set, and then an image de-noising model is established based on sparse regularization processing to obtain the neighborhood weights of similar image blocks. Second, a time image de-noising algorithm is designed to determine whether the coding coefficient reaches the standard value, and a new image de-noising method is obtained. Finally, the images of electronic clocks and mechanical clocks are used as two kinds of time images to compare different image de-noising methods, respectively. The results show that the sparsity regularization method has the highest peak signal-to-noise ratio among the six compared methods for different noise standard deviations and two time images. The image structure similarity is always above which shows that the proposed method is better than the other five image de-noising methods.","PeriodicalId":44688,"journal":{"name":"International Journal of Image and Graphics","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Time Image De-Noising Method Based on Sparse Regularization\",\"authors\":\"Xin Wang, Xiaogang Dong\",\"doi\":\"10.1142/s0219467825500093\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The blurring of texture edges often occurs during image data transmission and acquisition. To ensure the detailed clarity of the drag-time images, we propose a time image de-noising method based on sparse regularization. First, the image pixel sparsity index is set, and then an image de-noising model is established based on sparse regularization processing to obtain the neighborhood weights of similar image blocks. Second, a time image de-noising algorithm is designed to determine whether the coding coefficient reaches the standard value, and a new image de-noising method is obtained. Finally, the images of electronic clocks and mechanical clocks are used as two kinds of time images to compare different image de-noising methods, respectively. The results show that the sparsity regularization method has the highest peak signal-to-noise ratio among the six compared methods for different noise standard deviations and two time images. The image structure similarity is always above which shows that the proposed method is better than the other five image de-noising methods.\",\"PeriodicalId\":44688,\"journal\":{\"name\":\"International Journal of Image and Graphics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Image and Graphics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s0219467825500093\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Image and Graphics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0219467825500093","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
Time Image De-Noising Method Based on Sparse Regularization
The blurring of texture edges often occurs during image data transmission and acquisition. To ensure the detailed clarity of the drag-time images, we propose a time image de-noising method based on sparse regularization. First, the image pixel sparsity index is set, and then an image de-noising model is established based on sparse regularization processing to obtain the neighborhood weights of similar image blocks. Second, a time image de-noising algorithm is designed to determine whether the coding coefficient reaches the standard value, and a new image de-noising method is obtained. Finally, the images of electronic clocks and mechanical clocks are used as two kinds of time images to compare different image de-noising methods, respectively. The results show that the sparsity regularization method has the highest peak signal-to-noise ratio among the six compared methods for different noise standard deviations and two time images. The image structure similarity is always above which shows that the proposed method is better than the other five image de-noising methods.