基于深度强化学习的自主地震定位

IF 2.6 3区 地球科学 Q2 GEOCHEMISTRY & GEOPHYSICS Seismological Research Letters Pub Date : 2023-10-03 DOI:10.1785/0220230118
Wenhuan Kuang, Congcong Yuan, Zhihui Zou, Jie Zhang, Wei Zhang
{"title":"基于深度强化学习的自主地震定位","authors":"Wenhuan Kuang, Congcong Yuan, Zhihui Zou, Jie Zhang, Wei Zhang","doi":"10.1785/0220230118","DOIUrl":null,"url":null,"abstract":"Abstract Recent advances in artificial intelligence allow seismologists to upgrade the workflow for locating earthquakes. The standard workflow concatenates a sequence of data processing modules, including event detection, phase picking, association, and event location, with elaborately fine-tuned parameters, lacking automation and convenience. Here, we leverage deep reinforcement learning and develop a state-of-the-art earthquake robot (EQBot) to help advance automated earthquake location. The EQBot learns from tremendous trial-and-error explorations, which aims to best align the observed P and S waves, complying with the geophysical principle of gather alignments in source imaging. After training on earthquakes (M ≥ 2.0) for a decade in the Los Angeles region, it can locate earthquakes directly from waveforms with mean absolute errors of 1.32 km, 1.35 km, and 1.96 km in latitude, longitude, and depth, respectively, closely comparable to the cataloged locations. Moreover, it can automatically implement quality control by examining the alignments of P and S waves. Our study provides a new solution to advance the earthquake location process toward full automation.","PeriodicalId":21687,"journal":{"name":"Seismological Research Letters","volume":"33 2 1","pages":"0"},"PeriodicalIF":2.6000,"publicationDate":"2023-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Autonomous Earthquake Location via Deep Reinforcement Learning\",\"authors\":\"Wenhuan Kuang, Congcong Yuan, Zhihui Zou, Jie Zhang, Wei Zhang\",\"doi\":\"10.1785/0220230118\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Recent advances in artificial intelligence allow seismologists to upgrade the workflow for locating earthquakes. The standard workflow concatenates a sequence of data processing modules, including event detection, phase picking, association, and event location, with elaborately fine-tuned parameters, lacking automation and convenience. Here, we leverage deep reinforcement learning and develop a state-of-the-art earthquake robot (EQBot) to help advance automated earthquake location. The EQBot learns from tremendous trial-and-error explorations, which aims to best align the observed P and S waves, complying with the geophysical principle of gather alignments in source imaging. After training on earthquakes (M ≥ 2.0) for a decade in the Los Angeles region, it can locate earthquakes directly from waveforms with mean absolute errors of 1.32 km, 1.35 km, and 1.96 km in latitude, longitude, and depth, respectively, closely comparable to the cataloged locations. Moreover, it can automatically implement quality control by examining the alignments of P and S waves. Our study provides a new solution to advance the earthquake location process toward full automation.\",\"PeriodicalId\":21687,\"journal\":{\"name\":\"Seismological Research Letters\",\"volume\":\"33 2 1\",\"pages\":\"0\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2023-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Seismological Research Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1785/0220230118\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Seismological Research Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1785/0220230118","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

人工智能的最新进展使地震学家能够升级定位地震的工作流程。标准工作流将一系列数据处理模块(包括事件检测、阶段选择、关联和事件定位)与精心调整的参数连接在一起,缺乏自动化和便利性。在这里,我们利用深度强化学习并开发了最先进的地震机器人(EQBot)来帮助推进自动化地震定位。EQBot从大量的试错勘探中学习,旨在根据震源成像中聚集对齐的地球物理原理,将观测到的P波和S波进行最佳对齐。在洛杉矶地区对地震(M≥2.0)进行了10年的训练后,它可以直接从波形中定位地震,纬度、经度和深度的平均绝对误差分别为1.32 km、1.35 km和1.96 km,与编录的位置非常接近。此外,它还可以通过检测横波和横波的排列来自动实现质量控制。本研究为推进地震定位过程的全自动化提供了一种新的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Autonomous Earthquake Location via Deep Reinforcement Learning
Abstract Recent advances in artificial intelligence allow seismologists to upgrade the workflow for locating earthquakes. The standard workflow concatenates a sequence of data processing modules, including event detection, phase picking, association, and event location, with elaborately fine-tuned parameters, lacking automation and convenience. Here, we leverage deep reinforcement learning and develop a state-of-the-art earthquake robot (EQBot) to help advance automated earthquake location. The EQBot learns from tremendous trial-and-error explorations, which aims to best align the observed P and S waves, complying with the geophysical principle of gather alignments in source imaging. After training on earthquakes (M ≥ 2.0) for a decade in the Los Angeles region, it can locate earthquakes directly from waveforms with mean absolute errors of 1.32 km, 1.35 km, and 1.96 km in latitude, longitude, and depth, respectively, closely comparable to the cataloged locations. Moreover, it can automatically implement quality control by examining the alignments of P and S waves. Our study provides a new solution to advance the earthquake location process toward full automation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Seismological Research Letters
Seismological Research Letters 地学-地球化学与地球物理
CiteScore
6.60
自引率
12.10%
发文量
239
审稿时长
3 months
期刊介绍: Information not localized
期刊最新文献
Follow the Trace: Becoming a Seismo‐Detective with a Campus‐Based Raspberry Shake Seismometer Nominations for the Next Joyner Lecturer Due 30 June Imaging Urban Hidden Faults with Ambient Noise Recorded by Dense Seismic Arrays Microseismic Event Location with Dual Vertical DAS Arrays: Insights from the FORGE 2022 Stimulation New Empirical Source‐Scaling Laws for Crustal Earthquakes Incorporating Fault Dip and Seismogenic‐Thickness Effects
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1