{"title":"心电信号折叠自适应点阵滤波器的FPGA设计与实现","authors":"Kalamani C., Kamatchi S., Sasikala S., Murali L.","doi":"10.1080/00051144.2023.2205725","DOIUrl":null,"url":null,"abstract":"An adaptive filter is the utmost essential filter castoff in statistical signal dealing. The fine-tuning of the filter factor in relation to the response signal is the adaptive filter's key feature due to fewer calculations, Least Mean Square (LMS) adaptive filters are widely used to remove noise from Electrocardiograms (ECG). The adaptive filters are realized as signal processing algorithms in Digital Signal Processors (DSPs) or in VLSI Signal Processors (VSPs). The technique provides a way to create a folded adaptive lattice LMS filter, which requires less hardware than an adaptive lattice filter. Folding is an algorithm that uses a time scheduling technique that combines arithmetic operations into one operation which reduces Register and silicon chip areas. The design and implementation of a folded lattice adaptive filter remove Power Line Interference (PLI) noise from ECG signals. The MATLAB Xilinx System Generator tool is used to design the Adaptive Lattice LMS Filter and Folded Adaptive Lattice LMS Filter with Folding Order K = 2 and K = 4 and realized in the Virtex 5 FPGA KIT. The results of the folded architecture show that the area is reduced for K = 2 and K = 4 by 82.60% and 91.05%, respectively compared with a normal adaptive lattice filter.","PeriodicalId":55412,"journal":{"name":"Automatika","volume":"20 1","pages":"0"},"PeriodicalIF":1.7000,"publicationDate":"2023-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The design and implementation of folded adaptive lattice filter structures in FPGA for ECG signals\",\"authors\":\"Kalamani C., Kamatchi S., Sasikala S., Murali L.\",\"doi\":\"10.1080/00051144.2023.2205725\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An adaptive filter is the utmost essential filter castoff in statistical signal dealing. The fine-tuning of the filter factor in relation to the response signal is the adaptive filter's key feature due to fewer calculations, Least Mean Square (LMS) adaptive filters are widely used to remove noise from Electrocardiograms (ECG). The adaptive filters are realized as signal processing algorithms in Digital Signal Processors (DSPs) or in VLSI Signal Processors (VSPs). The technique provides a way to create a folded adaptive lattice LMS filter, which requires less hardware than an adaptive lattice filter. Folding is an algorithm that uses a time scheduling technique that combines arithmetic operations into one operation which reduces Register and silicon chip areas. The design and implementation of a folded lattice adaptive filter remove Power Line Interference (PLI) noise from ECG signals. The MATLAB Xilinx System Generator tool is used to design the Adaptive Lattice LMS Filter and Folded Adaptive Lattice LMS Filter with Folding Order K = 2 and K = 4 and realized in the Virtex 5 FPGA KIT. The results of the folded architecture show that the area is reduced for K = 2 and K = 4 by 82.60% and 91.05%, respectively compared with a normal adaptive lattice filter.\",\"PeriodicalId\":55412,\"journal\":{\"name\":\"Automatika\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2023-05-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Automatika\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/00051144.2023.2205725\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Automatika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/00051144.2023.2205725","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
The design and implementation of folded adaptive lattice filter structures in FPGA for ECG signals
An adaptive filter is the utmost essential filter castoff in statistical signal dealing. The fine-tuning of the filter factor in relation to the response signal is the adaptive filter's key feature due to fewer calculations, Least Mean Square (LMS) adaptive filters are widely used to remove noise from Electrocardiograms (ECG). The adaptive filters are realized as signal processing algorithms in Digital Signal Processors (DSPs) or in VLSI Signal Processors (VSPs). The technique provides a way to create a folded adaptive lattice LMS filter, which requires less hardware than an adaptive lattice filter. Folding is an algorithm that uses a time scheduling technique that combines arithmetic operations into one operation which reduces Register and silicon chip areas. The design and implementation of a folded lattice adaptive filter remove Power Line Interference (PLI) noise from ECG signals. The MATLAB Xilinx System Generator tool is used to design the Adaptive Lattice LMS Filter and Folded Adaptive Lattice LMS Filter with Folding Order K = 2 and K = 4 and realized in the Virtex 5 FPGA KIT. The results of the folded architecture show that the area is reduced for K = 2 and K = 4 by 82.60% and 91.05%, respectively compared with a normal adaptive lattice filter.
AutomatikaAUTOMATION & CONTROL SYSTEMS-ENGINEERING, ELECTRICAL & ELECTRONIC
CiteScore
4.00
自引率
5.30%
发文量
65
审稿时长
4.5 months
期刊介绍:
AUTOMATIKA – Journal for Control, Measurement, Electronics, Computing and Communications is an international scientific journal that publishes scientific and professional papers in the field of automatic control, robotics, measurements, electronics, computing, communications and related areas. Click here for full Focus & Scope.
AUTOMATIKA is published since 1960, and since 1991 by KoREMA - Croatian Society for Communications, Computing, Electronics, Measurement and Control, Member of IMEKO and IFAC.