基于双深度图像先验的实际相位检索

Zhong Zhuang, David Yang, Felix Hofmann, David Barmherzig, Ju Sun
{"title":"基于双深度图像先验的实际相位检索","authors":"Zhong Zhuang, David Yang, Felix Hofmann, David Barmherzig, Ju Sun","doi":"10.2352/ei.2023.35.14.coimg-153","DOIUrl":null,"url":null,"abstract":"Phase retrieval (PR) consists of recovering complex-valued objects from their oversampled Fourier magnitudes and takes a central place in scientific imaging. A critical issue around PR is the typical nonconvexity in natural formulations and the associated bad local minimizers. The issue is exacerbated when the support of the object is not precisely known and hence must be overspecified in practice. Practical methods for PR hence involve convolved algorithms, e.g., multiple cycles of hybrid input-output (HIO) + error reduction (ER), to avoid the bad local minimizers and attain reasonable speed, and heuristics to refine the support of the object, e.g., the famous shrinkwrap trick. Overall, the convolved algorithms and the support-refinement heuristics induce multiple algorithm hyperparameters, to which the recovery quality is often sensitive. In this work, we propose a novel PR method by parameterizing the object as the output of a learnable neural network, i.e., deep image prior (DIP). For complex-valued objects in PR, we can flexibly parametrize the magnitude and phase, or the real and imaginary parts separately by two DIPs. We show that this simple idea, free from multi-hyperparameter tuning and support-refinement heuristics, can obtain superior performance than gold-standard PR methods. For the session: Computational Imaging using Fourier Ptychography and Phase Retrieval.","PeriodicalId":73514,"journal":{"name":"IS&T International Symposium on Electronic Imaging","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Practical phase retrieval using double deep image priors\",\"authors\":\"Zhong Zhuang, David Yang, Felix Hofmann, David Barmherzig, Ju Sun\",\"doi\":\"10.2352/ei.2023.35.14.coimg-153\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Phase retrieval (PR) consists of recovering complex-valued objects from their oversampled Fourier magnitudes and takes a central place in scientific imaging. A critical issue around PR is the typical nonconvexity in natural formulations and the associated bad local minimizers. The issue is exacerbated when the support of the object is not precisely known and hence must be overspecified in practice. Practical methods for PR hence involve convolved algorithms, e.g., multiple cycles of hybrid input-output (HIO) + error reduction (ER), to avoid the bad local minimizers and attain reasonable speed, and heuristics to refine the support of the object, e.g., the famous shrinkwrap trick. Overall, the convolved algorithms and the support-refinement heuristics induce multiple algorithm hyperparameters, to which the recovery quality is often sensitive. In this work, we propose a novel PR method by parameterizing the object as the output of a learnable neural network, i.e., deep image prior (DIP). For complex-valued objects in PR, we can flexibly parametrize the magnitude and phase, or the real and imaginary parts separately by two DIPs. We show that this simple idea, free from multi-hyperparameter tuning and support-refinement heuristics, can obtain superior performance than gold-standard PR methods. For the session: Computational Imaging using Fourier Ptychography and Phase Retrieval.\",\"PeriodicalId\":73514,\"journal\":{\"name\":\"IS&T International Symposium on Electronic Imaging\",\"volume\":\"52 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IS&T International Symposium on Electronic Imaging\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2352/ei.2023.35.14.coimg-153\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IS&T International Symposium on Electronic Imaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2352/ei.2023.35.14.coimg-153","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

相位恢复(PR)包括从过采样的傅立叶幅度中恢复复值物体,在科学成像中占有中心地位。关于PR的一个关键问题是自然公式中的典型非凸性和相关的坏局部最小值。当对象的支持不是精确已知的,因此在实践中必须过度指定时,问题就会加剧。因此,PR的实用方法包括卷积算法,例如,混合输入输出(HIO) +误差减少(ER)的多循环,以避免不良的局部最小化并获得合理的速度,以及启发式算法,以改进对象的支持,例如著名的shrinkwrap技巧。总的来说,卷积算法和支持改进启发式算法会产生多个算法超参数,这些超参数对恢复质量往往很敏感。在这项工作中,我们提出了一种新的PR方法,通过参数化对象作为可学习神经网络的输出,即深度图像先验(DIP)。对于PR中的复值对象,我们可以通过两个dip分别灵活地参数化幅度和相位,或实部和虚部。我们证明了这个简单的想法,没有多超参数调优和支持改进启发式,可以获得比金标准PR方法更好的性能。会议:计算成像使用傅里叶平面摄影和相位检索。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Practical phase retrieval using double deep image priors
Phase retrieval (PR) consists of recovering complex-valued objects from their oversampled Fourier magnitudes and takes a central place in scientific imaging. A critical issue around PR is the typical nonconvexity in natural formulations and the associated bad local minimizers. The issue is exacerbated when the support of the object is not precisely known and hence must be overspecified in practice. Practical methods for PR hence involve convolved algorithms, e.g., multiple cycles of hybrid input-output (HIO) + error reduction (ER), to avoid the bad local minimizers and attain reasonable speed, and heuristics to refine the support of the object, e.g., the famous shrinkwrap trick. Overall, the convolved algorithms and the support-refinement heuristics induce multiple algorithm hyperparameters, to which the recovery quality is often sensitive. In this work, we propose a novel PR method by parameterizing the object as the output of a learnable neural network, i.e., deep image prior (DIP). For complex-valued objects in PR, we can flexibly parametrize the magnitude and phase, or the real and imaginary parts separately by two DIPs. We show that this simple idea, free from multi-hyperparameter tuning and support-refinement heuristics, can obtain superior performance than gold-standard PR methods. For the session: Computational Imaging using Fourier Ptychography and Phase Retrieval.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Egocentric Boundaries on Distinguishing Colliding and Non-Colliding Pedestrians while Walking in a Virtual Environment. Optical flow for autonomous driving: Applications, challenges and improvements Improving the performance of web-streaming by super-resolution upscaling techniques Self-supervised visual representation learning on food images Conditional synthetic food image generation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1