飞行+航行无人机的混合最优控制

Taha Yasini, Ali Pakniyat
{"title":"飞行+航行无人机的混合最优控制","authors":"Taha Yasini, Ali Pakniyat","doi":"10.1115/1.4063603","DOIUrl":null,"url":null,"abstract":"Abstract This paper studies the combined maneuver of flying and sailing for a robotic system which is referred to as a flying+sailing drone. Due to the emergence of hybrid systems behavior in tasks which involve both the flying and sailing modes, a hybrid systems formulation of the robotic system is presented. Key characteristics of the system are (i) changes in the dimension of the state space as the system switches from flying to sailing and vice versa and (ii) the presence of autonomous switchings triggered only upon the landing of the drone on the water surface. For the scenario in which the drone's initial state is given in the flying mode and a fixed terminal state is specified in the sailing mode, the associated optimal control problems are studied within the vertical plane passing through the given points, hence the dynamics of the drone in the flying mode are represented in a five-dimensional state space (associated with three degrees-of-freedom) and in a three-dimensional state space in the sailing mode (associated with two degrees-of-freedom). In particular, the optimal control problems for the minimization of time and the minimization of the control effort are formulated, the associated necessary optimality conditions are obtained from the Hybrid Minimum Principle (HMP), and the associated numerical simulations are presented.","PeriodicalId":327130,"journal":{"name":"ASME Letters in Dynamic Systems and Control","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hybrid Optimal Control of a Flying+Sailing Drone\",\"authors\":\"Taha Yasini, Ali Pakniyat\",\"doi\":\"10.1115/1.4063603\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract This paper studies the combined maneuver of flying and sailing for a robotic system which is referred to as a flying+sailing drone. Due to the emergence of hybrid systems behavior in tasks which involve both the flying and sailing modes, a hybrid systems formulation of the robotic system is presented. Key characteristics of the system are (i) changes in the dimension of the state space as the system switches from flying to sailing and vice versa and (ii) the presence of autonomous switchings triggered only upon the landing of the drone on the water surface. For the scenario in which the drone's initial state is given in the flying mode and a fixed terminal state is specified in the sailing mode, the associated optimal control problems are studied within the vertical plane passing through the given points, hence the dynamics of the drone in the flying mode are represented in a five-dimensional state space (associated with three degrees-of-freedom) and in a three-dimensional state space in the sailing mode (associated with two degrees-of-freedom). In particular, the optimal control problems for the minimization of time and the minimization of the control effort are formulated, the associated necessary optimality conditions are obtained from the Hybrid Minimum Principle (HMP), and the associated numerical simulations are presented.\",\"PeriodicalId\":327130,\"journal\":{\"name\":\"ASME Letters in Dynamic Systems and Control\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ASME Letters in Dynamic Systems and Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4063603\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ASME Letters in Dynamic Systems and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/1.4063603","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

摘要本文研究了一种飞行+航行机器人系统的飞行与航行联合机动问题。针对飞行和航行任务中混合系统行为的出现,提出了机器人系统的混合系统公式。该系统的关键特征是(i)当系统从飞行切换到航行时状态空间维度的变化,反之亦然;(ii)只有在无人机降落在水面上时才会触发自主切换。的场景,在该场景中,无人机在飞行模式的初始状态是和固定终端状态在航行中指定模式,相关的最优控制问题是研究在垂直面通过给定的点,因此无人机在飞行模式下的动态表示在一个五维状态空间(与三个自由度)和在三维状态空间的航行模式(与两个自由度)。在此基础上,提出了时间最小化和控制努力最小化的最优控制问题,利用混合最小原理(HMP)得到了相关的必要最优性条件,并进行了数值模拟。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Hybrid Optimal Control of a Flying+Sailing Drone
Abstract This paper studies the combined maneuver of flying and sailing for a robotic system which is referred to as a flying+sailing drone. Due to the emergence of hybrid systems behavior in tasks which involve both the flying and sailing modes, a hybrid systems formulation of the robotic system is presented. Key characteristics of the system are (i) changes in the dimension of the state space as the system switches from flying to sailing and vice versa and (ii) the presence of autonomous switchings triggered only upon the landing of the drone on the water surface. For the scenario in which the drone's initial state is given in the flying mode and a fixed terminal state is specified in the sailing mode, the associated optimal control problems are studied within the vertical plane passing through the given points, hence the dynamics of the drone in the flying mode are represented in a five-dimensional state space (associated with three degrees-of-freedom) and in a three-dimensional state space in the sailing mode (associated with two degrees-of-freedom). In particular, the optimal control problems for the minimization of time and the minimization of the control effort are formulated, the associated necessary optimality conditions are obtained from the Hybrid Minimum Principle (HMP), and the associated numerical simulations are presented.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Some Results on the Properties of Discrete-Time LTI State-Space Systems Using Constrained Convex Optimization in Parameter Estimation of Process Dynamics with Dead Time Utilisation of Manipulator Redundancy for Torque Reduction During Force Interaction Adaptive Tracking Control of Robotic Manipulator Subjected to Actuator Saturation and Partial Loss of Effectiveness Utilisation of Manipulator Redundancy for Torque Reduction During Force Interaction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1