Emily M. Wollmuth, Alberto Correa, Manuela Alvarado Obando, Michelle K. Smith, Daniel H. Buckley, Kathleen L. Hefferon, Esther R. Angert
{"title":"帮助学生在3D中看到细菌:细胞模型增加了学生对细胞大小和扩散的学习","authors":"Emily M. Wollmuth, Alberto Correa, Manuela Alvarado Obando, Michelle K. Smith, Daniel H. Buckley, Kathleen L. Hefferon, Esther R. Angert","doi":"10.1128/jmbe.00089-23","DOIUrl":null,"url":null,"abstract":"ABSTRACT In the microbial world, cell size and shape impact physiology, but students struggle to visualize spatial relationships between cells and macromolecules. In prokaryotic cells, cell size is limited by reliance on diffusion for nutrient uptake and the transport of nutrients within the cell. Cells must also meet a minimum size threshold to accommodate essential cellular components such as ribosomes and DNA. Using 3D printing allows for the creation of custom models that can be influential teaching tools in the biology classroom. This lesson uses 3D cell models to teach students enrolled in an introductory microbiology course about bacterial cell size and the biological importance of surface-area-to-volume ratio. During the lesson, students interact with 3D cell models and discuss a series of questions in small groups. Student learning was assessed using quantitative and qualitative student response data collected pre- and post-lesson. Student achievement of learning objectives, and their confidence in their knowledge of these concepts, improved post-lesson, and these gains were statistically significant. Our findings suggest that interacting with 3D-printed cell models improves student understanding about bacterial cell size and diffusion.","PeriodicalId":46416,"journal":{"name":"Journal of Microbiology & Biology Education","volume":"7 1","pages":"0"},"PeriodicalIF":1.6000,"publicationDate":"2023-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Helping students see bacteria in 3D: cellular models increase student learning about cell size and diffusion\",\"authors\":\"Emily M. Wollmuth, Alberto Correa, Manuela Alvarado Obando, Michelle K. Smith, Daniel H. Buckley, Kathleen L. Hefferon, Esther R. Angert\",\"doi\":\"10.1128/jmbe.00089-23\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT In the microbial world, cell size and shape impact physiology, but students struggle to visualize spatial relationships between cells and macromolecules. In prokaryotic cells, cell size is limited by reliance on diffusion for nutrient uptake and the transport of nutrients within the cell. Cells must also meet a minimum size threshold to accommodate essential cellular components such as ribosomes and DNA. Using 3D printing allows for the creation of custom models that can be influential teaching tools in the biology classroom. This lesson uses 3D cell models to teach students enrolled in an introductory microbiology course about bacterial cell size and the biological importance of surface-area-to-volume ratio. During the lesson, students interact with 3D cell models and discuss a series of questions in small groups. Student learning was assessed using quantitative and qualitative student response data collected pre- and post-lesson. Student achievement of learning objectives, and their confidence in their knowledge of these concepts, improved post-lesson, and these gains were statistically significant. Our findings suggest that interacting with 3D-printed cell models improves student understanding about bacterial cell size and diffusion.\",\"PeriodicalId\":46416,\"journal\":{\"name\":\"Journal of Microbiology & Biology Education\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2023-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Microbiology & Biology Education\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1128/jmbe.00089-23\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"EDUCATION, SCIENTIFIC DISCIPLINES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Microbiology & Biology Education","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1128/jmbe.00089-23","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"EDUCATION, SCIENTIFIC DISCIPLINES","Score":null,"Total":0}
Helping students see bacteria in 3D: cellular models increase student learning about cell size and diffusion
ABSTRACT In the microbial world, cell size and shape impact physiology, but students struggle to visualize spatial relationships between cells and macromolecules. In prokaryotic cells, cell size is limited by reliance on diffusion for nutrient uptake and the transport of nutrients within the cell. Cells must also meet a minimum size threshold to accommodate essential cellular components such as ribosomes and DNA. Using 3D printing allows for the creation of custom models that can be influential teaching tools in the biology classroom. This lesson uses 3D cell models to teach students enrolled in an introductory microbiology course about bacterial cell size and the biological importance of surface-area-to-volume ratio. During the lesson, students interact with 3D cell models and discuss a series of questions in small groups. Student learning was assessed using quantitative and qualitative student response data collected pre- and post-lesson. Student achievement of learning objectives, and their confidence in their knowledge of these concepts, improved post-lesson, and these gains were statistically significant. Our findings suggest that interacting with 3D-printed cell models improves student understanding about bacterial cell size and diffusion.