M. Bendaoued, A. Es-saleh, B. Nasiri, S. Lakrit, S. Das, R. Mandry, A. Faize
{"title":"面向5G及现代无线通信应用的台阶渐变地平面超宽带共面天线设计","authors":"M. Bendaoued, A. Es-saleh, B. Nasiri, S. Lakrit, S. Das, R. Mandry, A. Faize","doi":"10.21272/jnep.15(4).04024","DOIUrl":null,"url":null,"abstract":"This article covers a wideband coplanar rectangular patch antenna for 5G and wireless communication applications below 6 GHz. The proposed antenna design comprises of a rectangular CPW fed patch with a partial ground plane loaded with stair-case shaped slots. The simulated results demonstrate that the studied antenna has working band that ranges from 3 GHz to 6 GHz with | S 11 | ≤ 10 dB, covering the whole N77/N78/N79 band for 5G sub-6 GHz as well as several modern wireless communication systems including WiMAX, WLAN and long-term evolution (LTE). In addition, the various procedures can be utilized to design and match this antenna for additional frequency bands. The examined antenna displays steady bidirectional radiation patterns, high gain, and efficiency. The projected structure has an overall size of 31.84 26.06 mm 2 and it is designed with a cheap FR4 type substrate of 4.4 relative dielectric constant. The suggested antenna has a miniaturized dimensions and good electrical performances. The proposed antenna is developed and simulated using Computer Simulation Advanced Design System (ADS). It is of potential interests because of its symmetrical radiation behavior, tiny footprint, and planar form. The investigated antenna may be a prospective choice for usage in 5G for sub 6 GHz bands and current wireless communication systems due to its superior performance parameters.","PeriodicalId":16654,"journal":{"name":"Journal of Nano-and electronic Physics","volume":"86 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design of a UWB Coplanar Antenna with Step Graded Ground Plane for 5G and Modern Wireless Communication Applications\",\"authors\":\"M. Bendaoued, A. Es-saleh, B. Nasiri, S. Lakrit, S. Das, R. Mandry, A. Faize\",\"doi\":\"10.21272/jnep.15(4).04024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article covers a wideband coplanar rectangular patch antenna for 5G and wireless communication applications below 6 GHz. The proposed antenna design comprises of a rectangular CPW fed patch with a partial ground plane loaded with stair-case shaped slots. The simulated results demonstrate that the studied antenna has working band that ranges from 3 GHz to 6 GHz with | S 11 | ≤ 10 dB, covering the whole N77/N78/N79 band for 5G sub-6 GHz as well as several modern wireless communication systems including WiMAX, WLAN and long-term evolution (LTE). In addition, the various procedures can be utilized to design and match this antenna for additional frequency bands. The examined antenna displays steady bidirectional radiation patterns, high gain, and efficiency. The projected structure has an overall size of 31.84 26.06 mm 2 and it is designed with a cheap FR4 type substrate of 4.4 relative dielectric constant. The suggested antenna has a miniaturized dimensions and good electrical performances. The proposed antenna is developed and simulated using Computer Simulation Advanced Design System (ADS). It is of potential interests because of its symmetrical radiation behavior, tiny footprint, and planar form. The investigated antenna may be a prospective choice for usage in 5G for sub 6 GHz bands and current wireless communication systems due to its superior performance parameters.\",\"PeriodicalId\":16654,\"journal\":{\"name\":\"Journal of Nano-and electronic Physics\",\"volume\":\"86 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Nano-and electronic Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21272/jnep.15(4).04024\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nano-and electronic Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21272/jnep.15(4).04024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Physics and Astronomy","Score":null,"Total":0}
Design of a UWB Coplanar Antenna with Step Graded Ground Plane for 5G and Modern Wireless Communication Applications
This article covers a wideband coplanar rectangular patch antenna for 5G and wireless communication applications below 6 GHz. The proposed antenna design comprises of a rectangular CPW fed patch with a partial ground plane loaded with stair-case shaped slots. The simulated results demonstrate that the studied antenna has working band that ranges from 3 GHz to 6 GHz with | S 11 | ≤ 10 dB, covering the whole N77/N78/N79 band for 5G sub-6 GHz as well as several modern wireless communication systems including WiMAX, WLAN and long-term evolution (LTE). In addition, the various procedures can be utilized to design and match this antenna for additional frequency bands. The examined antenna displays steady bidirectional radiation patterns, high gain, and efficiency. The projected structure has an overall size of 31.84 26.06 mm 2 and it is designed with a cheap FR4 type substrate of 4.4 relative dielectric constant. The suggested antenna has a miniaturized dimensions and good electrical performances. The proposed antenna is developed and simulated using Computer Simulation Advanced Design System (ADS). It is of potential interests because of its symmetrical radiation behavior, tiny footprint, and planar form. The investigated antenna may be a prospective choice for usage in 5G for sub 6 GHz bands and current wireless communication systems due to its superior performance parameters.