Gaye MacDonald, Rajasekaran R. Lada, C. D. Caldwell, Chibuike C. Udenigwe, Mason T. Maconald
{"title":"对比抗脱落冷杉(<i>Abies balsamea</i>)采后气孔和叶绿体降解的定性评价(l)机)。","authors":"Gaye MacDonald, Rajasekaran R. Lada, C. D. Caldwell, Chibuike C. Udenigwe, Mason T. Maconald","doi":"10.4236/ajps.2023.149069","DOIUrl":null,"url":null,"abstract":"Balsam fir is an important Christmas tree species, especially in eastern Canada. The natural Christmas tree industry faces a challenge in postharvest needle abscission. Though there have been many studies describing the physiological triggers and consequences in postharvest balsam fir, there have been no studies describing morphological or ultrastructural changes. Therefore, the objective of this study was to examine changes in stomata and chloroplast of postharvest needles. Branches were collected from low and high needle abscission resistance balsam fir genotypes, placed in water, and displayed in typical household conditions for 11 weeks. Needle abscission, chlorophyll fluorescence, and water uptake were monitored throughout. Needles stomata and chloroplasts were examined under a scanning and transmission electron microscope, respectively, each week. All branches had increased abscission, decreased chlorophyll fluorescence, and decreased water uptake over time. Needle surfaces accumulated fungal hyphae, especially in stomata. Chloroplasts demonstrated some dysfunction within two weeks, with notable decreases in chloroplast starch and increases in plastoglobulins. Within several weeks thylakoid membranes had been dismantled as chloroplasts transformed into gerontoplasts. All biophysical and structural changes were more pronounced in low needle abscission resistant genotypes. This research identifies a potential role for needle fungi in postharvest needle abscission and confirms the postharvest senescence of chloroplasts. Though it was previously speculated that chloroplasts must senesce postharvest, this study identifies how quickly this process occurs and that it occurs at different rates in contrasting genotypes.","PeriodicalId":7726,"journal":{"name":"American Journal of Plant Sciences","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Qualitative Assessment of Postharvest Stomata and Chloroplast Degradation in Contrasting Abscission Resistant Balsam Fir (&lt;i&gt;Abies balsamea&lt;/i&gt; (L.) Mill.)\",\"authors\":\"Gaye MacDonald, Rajasekaran R. Lada, C. D. Caldwell, Chibuike C. Udenigwe, Mason T. Maconald\",\"doi\":\"10.4236/ajps.2023.149069\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Balsam fir is an important Christmas tree species, especially in eastern Canada. The natural Christmas tree industry faces a challenge in postharvest needle abscission. Though there have been many studies describing the physiological triggers and consequences in postharvest balsam fir, there have been no studies describing morphological or ultrastructural changes. Therefore, the objective of this study was to examine changes in stomata and chloroplast of postharvest needles. Branches were collected from low and high needle abscission resistance balsam fir genotypes, placed in water, and displayed in typical household conditions for 11 weeks. Needle abscission, chlorophyll fluorescence, and water uptake were monitored throughout. Needles stomata and chloroplasts were examined under a scanning and transmission electron microscope, respectively, each week. All branches had increased abscission, decreased chlorophyll fluorescence, and decreased water uptake over time. Needle surfaces accumulated fungal hyphae, especially in stomata. Chloroplasts demonstrated some dysfunction within two weeks, with notable decreases in chloroplast starch and increases in plastoglobulins. Within several weeks thylakoid membranes had been dismantled as chloroplasts transformed into gerontoplasts. All biophysical and structural changes were more pronounced in low needle abscission resistant genotypes. This research identifies a potential role for needle fungi in postharvest needle abscission and confirms the postharvest senescence of chloroplasts. Though it was previously speculated that chloroplasts must senesce postharvest, this study identifies how quickly this process occurs and that it occurs at different rates in contrasting genotypes.\",\"PeriodicalId\":7726,\"journal\":{\"name\":\"American Journal of Plant Sciences\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"American Journal of Plant Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4236/ajps.2023.149069\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"American Journal of Plant Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4236/ajps.2023.149069","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Qualitative Assessment of Postharvest Stomata and Chloroplast Degradation in Contrasting Abscission Resistant Balsam Fir (<i>Abies balsamea</i> (L.) Mill.)
Balsam fir is an important Christmas tree species, especially in eastern Canada. The natural Christmas tree industry faces a challenge in postharvest needle abscission. Though there have been many studies describing the physiological triggers and consequences in postharvest balsam fir, there have been no studies describing morphological or ultrastructural changes. Therefore, the objective of this study was to examine changes in stomata and chloroplast of postharvest needles. Branches were collected from low and high needle abscission resistance balsam fir genotypes, placed in water, and displayed in typical household conditions for 11 weeks. Needle abscission, chlorophyll fluorescence, and water uptake were monitored throughout. Needles stomata and chloroplasts were examined under a scanning and transmission electron microscope, respectively, each week. All branches had increased abscission, decreased chlorophyll fluorescence, and decreased water uptake over time. Needle surfaces accumulated fungal hyphae, especially in stomata. Chloroplasts demonstrated some dysfunction within two weeks, with notable decreases in chloroplast starch and increases in plastoglobulins. Within several weeks thylakoid membranes had been dismantled as chloroplasts transformed into gerontoplasts. All biophysical and structural changes were more pronounced in low needle abscission resistant genotypes. This research identifies a potential role for needle fungi in postharvest needle abscission and confirms the postharvest senescence of chloroplasts. Though it was previously speculated that chloroplasts must senesce postharvest, this study identifies how quickly this process occurs and that it occurs at different rates in contrasting genotypes.