Tatsuya OYAMA, Kota YOSHIDA, Shunsuke OKURA, Takeshi FUJINO
{"title":"基于故障注入攻击的图像传感器接口对抗实例","authors":"Tatsuya OYAMA, Kota YOSHIDA, Shunsuke OKURA, Takeshi FUJINO","doi":"10.1587/transfun.2023cip0025","DOIUrl":null,"url":null,"abstract":"Adversarial examples (AEs), which cause misclassification by adding subtle perturbations to input images, have been proposed as an attack method on image-classification systems using deep neural networks (DNNs). Physical AEs created by attaching stickers to traffic signs have been reported, which are a threat to traffic-sign-recognition DNNs used in advanced driver assistance systems. We previously proposed an attack method for generating a noise area on images by superimposing an electrical signal on the mobile industry processor interface and showed that it can generate a single adversarial mark that triggers a backdoor attack on the input image. Therefore, we propose a misclassification attack method n DNNs by creating AEs that include small perturbations to multiple places on the image by the fault injection. The perturbation position for AEs is pre-calculated in advance against the target traffic-sign image, which will be captured on future driving. With 5.2% to 5.5% of a specific image on the simulation, the perturbation that induces misclassification to the target label was calculated. As the experimental results, we confirmed that the traffic-sign-recognition DNN on a Raspberry Pi was successfully misclassified when the target traffic sign was captured with. In addition, we created robust AEs that cause misclassification of images with varying positions and size by adding a common perturbation. We propose a method to reduce the amount of robust AEs perturbation. Our results demonstrated successful misclassification of the captured image with a high attack success rate even if the position and size of the captured image are slightly changed.","PeriodicalId":55003,"journal":{"name":"Ieice Transactions on Fundamentals of Electronics Communications and Computer Sciences","volume":null,"pages":null},"PeriodicalIF":0.4000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Adversarial Examples created by Fault Injection Attack on Image Sensor Interface\",\"authors\":\"Tatsuya OYAMA, Kota YOSHIDA, Shunsuke OKURA, Takeshi FUJINO\",\"doi\":\"10.1587/transfun.2023cip0025\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Adversarial examples (AEs), which cause misclassification by adding subtle perturbations to input images, have been proposed as an attack method on image-classification systems using deep neural networks (DNNs). Physical AEs created by attaching stickers to traffic signs have been reported, which are a threat to traffic-sign-recognition DNNs used in advanced driver assistance systems. We previously proposed an attack method for generating a noise area on images by superimposing an electrical signal on the mobile industry processor interface and showed that it can generate a single adversarial mark that triggers a backdoor attack on the input image. Therefore, we propose a misclassification attack method n DNNs by creating AEs that include small perturbations to multiple places on the image by the fault injection. The perturbation position for AEs is pre-calculated in advance against the target traffic-sign image, which will be captured on future driving. With 5.2% to 5.5% of a specific image on the simulation, the perturbation that induces misclassification to the target label was calculated. As the experimental results, we confirmed that the traffic-sign-recognition DNN on a Raspberry Pi was successfully misclassified when the target traffic sign was captured with. In addition, we created robust AEs that cause misclassification of images with varying positions and size by adding a common perturbation. We propose a method to reduce the amount of robust AEs perturbation. Our results demonstrated successful misclassification of the captured image with a high attack success rate even if the position and size of the captured image are slightly changed.\",\"PeriodicalId\":55003,\"journal\":{\"name\":\"Ieice Transactions on Fundamentals of Electronics Communications and Computer Sciences\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ieice Transactions on Fundamentals of Electronics Communications and Computer Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1587/transfun.2023cip0025\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ieice Transactions on Fundamentals of Electronics Communications and Computer Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1587/transfun.2023cip0025","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
Adversarial Examples created by Fault Injection Attack on Image Sensor Interface
Adversarial examples (AEs), which cause misclassification by adding subtle perturbations to input images, have been proposed as an attack method on image-classification systems using deep neural networks (DNNs). Physical AEs created by attaching stickers to traffic signs have been reported, which are a threat to traffic-sign-recognition DNNs used in advanced driver assistance systems. We previously proposed an attack method for generating a noise area on images by superimposing an electrical signal on the mobile industry processor interface and showed that it can generate a single adversarial mark that triggers a backdoor attack on the input image. Therefore, we propose a misclassification attack method n DNNs by creating AEs that include small perturbations to multiple places on the image by the fault injection. The perturbation position for AEs is pre-calculated in advance against the target traffic-sign image, which will be captured on future driving. With 5.2% to 5.5% of a specific image on the simulation, the perturbation that induces misclassification to the target label was calculated. As the experimental results, we confirmed that the traffic-sign-recognition DNN on a Raspberry Pi was successfully misclassified when the target traffic sign was captured with. In addition, we created robust AEs that cause misclassification of images with varying positions and size by adding a common perturbation. We propose a method to reduce the amount of robust AEs perturbation. Our results demonstrated successful misclassification of the captured image with a high attack success rate even if the position and size of the captured image are slightly changed.
期刊介绍:
Includes reports on research, developments, and examinations performed by the Society''s members for the specific fields shown in the category list such as detailed below, the contents of which may advance the development of science and industry:
(1) Reports on new theories, experiments with new contents, or extensions of and supplements to conventional theories and experiments.
(2) Reports on development of measurement technology and various applied technologies.
(3) Reports on the planning, design, manufacture, testing, or operation of facilities, machinery, parts, materials, etc.
(4) Presentation of new methods, suggestion of new angles, ideas, systematization, software, or any new facts regarding the above.