基于层次矩阵的可扩展物理最大似然估计

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS ACS Applied Bio Materials Pub Date : 2023-06-05 DOI:10.1137/21m1458880
Yian Chen, Mihai Anitescu
{"title":"基于层次矩阵的可扩展物理最大似然估计","authors":"Yian Chen, Mihai Anitescu","doi":"10.1137/21m1458880","DOIUrl":null,"url":null,"abstract":"Physics-based covariance models provide a systematic way to construct covariance models that are consistent with the underlying physical laws in Gaussian process analysis. The unknown parameters in the covariance models can be estimated using maximum likelihood estimation, but direct construction of the covariance matrix and classical strategies of computing with it require physical model runs, storage complexity, and computational complexity. To address such challenges, we propose to approximate the discretized covariance function using hierarchical matrices. By utilizing randomized range sketching for individual off-diagonal blocks, the construction process of the hierarchical covariance approximation requires physical model applications and the maximum likelihood computations require effort per iteration. We propose a new approach to compute exactly the trace of products of hierarchical matrices which results in the expected Fisher information matrix being computable in as well. The construction is totally matrix-free and the derivatives of the covariance matrix can then be approximated in the same hierarchical structure by differentiating the whole process. Numerical results are provided to demonstrate the effectiveness, accuracy, and efficiency of the proposed method for parameter estimations and uncertainty quantification.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Scalable Physics-Based Maximum Likelihood Estimation Using Hierarchical Matrices\",\"authors\":\"Yian Chen, Mihai Anitescu\",\"doi\":\"10.1137/21m1458880\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Physics-based covariance models provide a systematic way to construct covariance models that are consistent with the underlying physical laws in Gaussian process analysis. The unknown parameters in the covariance models can be estimated using maximum likelihood estimation, but direct construction of the covariance matrix and classical strategies of computing with it require physical model runs, storage complexity, and computational complexity. To address such challenges, we propose to approximate the discretized covariance function using hierarchical matrices. By utilizing randomized range sketching for individual off-diagonal blocks, the construction process of the hierarchical covariance approximation requires physical model applications and the maximum likelihood computations require effort per iteration. We propose a new approach to compute exactly the trace of products of hierarchical matrices which results in the expected Fisher information matrix being computable in as well. The construction is totally matrix-free and the derivatives of the covariance matrix can then be approximated in the same hierarchical structure by differentiating the whole process. Numerical results are provided to demonstrate the effectiveness, accuracy, and efficiency of the proposed method for parameter estimations and uncertainty quantification.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2023-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1137/21m1458880\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/21m1458880","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

在高斯过程分析中,基于物理的协方差模型为构建符合基本物理规律的协方差模型提供了一种系统的方法。协方差模型中的未知参数可以使用极大似然估计进行估计,但直接构建协方差矩阵以及使用协方差矩阵进行计算的经典策略需要物理模型运行、存储复杂度和计算复杂度。为了解决这些挑战,我们建议使用层次矩阵来近似离散协方差函数。通过对单个非对角线块使用随机范围草图,分层协方差近似的构建过程需要物理模型的应用,最大似然计算需要每次迭代的努力。我们提出了一种精确计算层次矩阵乘积轨迹的新方法,使得期望的费雪信息矩阵也可计算。这种构造是完全无矩阵的,通过微分整个过程可以在同一层次结构中逼近协方差矩阵的导数。数值结果证明了该方法在参数估计和不确定度量化方面的有效性、准确性和高效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Scalable Physics-Based Maximum Likelihood Estimation Using Hierarchical Matrices
Physics-based covariance models provide a systematic way to construct covariance models that are consistent with the underlying physical laws in Gaussian process analysis. The unknown parameters in the covariance models can be estimated using maximum likelihood estimation, but direct construction of the covariance matrix and classical strategies of computing with it require physical model runs, storage complexity, and computational complexity. To address such challenges, we propose to approximate the discretized covariance function using hierarchical matrices. By utilizing randomized range sketching for individual off-diagonal blocks, the construction process of the hierarchical covariance approximation requires physical model applications and the maximum likelihood computations require effort per iteration. We propose a new approach to compute exactly the trace of products of hierarchical matrices which results in the expected Fisher information matrix being computable in as well. The construction is totally matrix-free and the derivatives of the covariance matrix can then be approximated in the same hierarchical structure by differentiating the whole process. Numerical results are provided to demonstrate the effectiveness, accuracy, and efficiency of the proposed method for parameter estimations and uncertainty quantification.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
期刊最新文献
A Systematic Review of Sleep Disturbance in Idiopathic Intracranial Hypertension. Advancing Patient Education in Idiopathic Intracranial Hypertension: The Promise of Large Language Models. Anti-Myelin-Associated Glycoprotein Neuropathy: Recent Developments. Approach to Managing the Initial Presentation of Multiple Sclerosis: A Worldwide Practice Survey. Association Between LACE+ Index Risk Category and 90-Day Mortality After Stroke.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1