Tri Sulistyorini, Erma Sova, Nelly Sofie, Revida Iriana Napitupulu
{"title":"日本超参数卷积神经网络(cnn) dalam membangun模型segmentasi gambar menggunakan arsitektur u-net dengan tensorflow","authors":"Tri Sulistyorini, Erma Sova, Nelly Sofie, Revida Iriana Napitupulu","doi":"10.35760/ik.2023.v28i2.6959","DOIUrl":null,"url":null,"abstract":"Teknologi canggih membutuhkan keterampilan atau performa yang baik untuk memudahkan sebagian pekerjaan di era modern, yaitu dengan menggunakan pendekatan machine learning. Bidang machine learning telah mengalami perubahan yang impresif dengan adanya kemunculan Artificial Neural Network (ANN). Model komputasi ini terinspirasi oleh jaringan saraf biologis yang telah melampaui bentuk kecerdasan buatan pada machine learning pada umumnya. Salah satu arsitektur Artificial Neural Network (ANN) yang paling unggul yaitu Convolutional Neural Network (CNN). CNN pada umumnya digunakan untuk memecahkan masalah pengenalan pola berbasis gambar yang kemudian menghasilkan output yang cukup baik dalam hal kompleksitas sederhana. Tujuan penelitian adalah untuk Menerapkan convolutional neural network yaitu U-NET dan penerapannya pada TensorFlow, pembuatan segmentasi gambar dengan deep learning yang diterapkan seperti pada Oxford-IIIT Pet Dataset, melakukan pencarian prediksi yang dilakukan dengan arsitektur U-Net untuk menghasilkan hasil yang baik atau malah sebaliknya, melihat perbandingan Predicted Mask dengan True Mask pada kelas kucing yang munculkan dalam bentuk skor IOU dan penerapannya menggunakan nilai batas bawah pada IOU. Metode penelitian adalah untuk mengenalkan machine learning, CNN, dan arsitektur U-NET yang awalnya dirancang untuk segmentasi gambar biomedis. Hasil prediksi yang dilakukan dengan arsitektur U-Net menghasilkan hasil yang baik, perbandingan Predicted Mask dengan True Mask pada kelas kucing yang mendapatkan skor IOU sebesar 0.933. Pada penerapan ini menggunakan batas bawah 0.5 pada IOU sehingga model ini dapat berjalan dengan baik","PeriodicalId":471363,"journal":{"name":"Jurnal Ilmiah Informatika & Komputer","volume":"78 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"PENERAPAN HYPERPARAMETER CONVOLUTIONAL NEURAL NETWORK (CNN) DALAM MEMBANGUN MODEL SEGMENTASI GAMBAR MENGGUNAKAN ARSITEKTUR U-NET DENGAN TENSORFLOW\",\"authors\":\"Tri Sulistyorini, Erma Sova, Nelly Sofie, Revida Iriana Napitupulu\",\"doi\":\"10.35760/ik.2023.v28i2.6959\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Teknologi canggih membutuhkan keterampilan atau performa yang baik untuk memudahkan sebagian pekerjaan di era modern, yaitu dengan menggunakan pendekatan machine learning. Bidang machine learning telah mengalami perubahan yang impresif dengan adanya kemunculan Artificial Neural Network (ANN). Model komputasi ini terinspirasi oleh jaringan saraf biologis yang telah melampaui bentuk kecerdasan buatan pada machine learning pada umumnya. Salah satu arsitektur Artificial Neural Network (ANN) yang paling unggul yaitu Convolutional Neural Network (CNN). CNN pada umumnya digunakan untuk memecahkan masalah pengenalan pola berbasis gambar yang kemudian menghasilkan output yang cukup baik dalam hal kompleksitas sederhana. Tujuan penelitian adalah untuk Menerapkan convolutional neural network yaitu U-NET dan penerapannya pada TensorFlow, pembuatan segmentasi gambar dengan deep learning yang diterapkan seperti pada Oxford-IIIT Pet Dataset, melakukan pencarian prediksi yang dilakukan dengan arsitektur U-Net untuk menghasilkan hasil yang baik atau malah sebaliknya, melihat perbandingan Predicted Mask dengan True Mask pada kelas kucing yang munculkan dalam bentuk skor IOU dan penerapannya menggunakan nilai batas bawah pada IOU. Metode penelitian adalah untuk mengenalkan machine learning, CNN, dan arsitektur U-NET yang awalnya dirancang untuk segmentasi gambar biomedis. Hasil prediksi yang dilakukan dengan arsitektur U-Net menghasilkan hasil yang baik, perbandingan Predicted Mask dengan True Mask pada kelas kucing yang mendapatkan skor IOU sebesar 0.933. Pada penerapan ini menggunakan batas bawah 0.5 pada IOU sehingga model ini dapat berjalan dengan baik\",\"PeriodicalId\":471363,\"journal\":{\"name\":\"Jurnal Ilmiah Informatika & Komputer\",\"volume\":\"78 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Jurnal Ilmiah Informatika & Komputer\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.35760/ik.2023.v28i2.6959\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Ilmiah Informatika & Komputer","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.35760/ik.2023.v28i2.6959","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
PENERAPAN HYPERPARAMETER CONVOLUTIONAL NEURAL NETWORK (CNN) DALAM MEMBANGUN MODEL SEGMENTASI GAMBAR MENGGUNAKAN ARSITEKTUR U-NET DENGAN TENSORFLOW
Teknologi canggih membutuhkan keterampilan atau performa yang baik untuk memudahkan sebagian pekerjaan di era modern, yaitu dengan menggunakan pendekatan machine learning. Bidang machine learning telah mengalami perubahan yang impresif dengan adanya kemunculan Artificial Neural Network (ANN). Model komputasi ini terinspirasi oleh jaringan saraf biologis yang telah melampaui bentuk kecerdasan buatan pada machine learning pada umumnya. Salah satu arsitektur Artificial Neural Network (ANN) yang paling unggul yaitu Convolutional Neural Network (CNN). CNN pada umumnya digunakan untuk memecahkan masalah pengenalan pola berbasis gambar yang kemudian menghasilkan output yang cukup baik dalam hal kompleksitas sederhana. Tujuan penelitian adalah untuk Menerapkan convolutional neural network yaitu U-NET dan penerapannya pada TensorFlow, pembuatan segmentasi gambar dengan deep learning yang diterapkan seperti pada Oxford-IIIT Pet Dataset, melakukan pencarian prediksi yang dilakukan dengan arsitektur U-Net untuk menghasilkan hasil yang baik atau malah sebaliknya, melihat perbandingan Predicted Mask dengan True Mask pada kelas kucing yang munculkan dalam bentuk skor IOU dan penerapannya menggunakan nilai batas bawah pada IOU. Metode penelitian adalah untuk mengenalkan machine learning, CNN, dan arsitektur U-NET yang awalnya dirancang untuk segmentasi gambar biomedis. Hasil prediksi yang dilakukan dengan arsitektur U-Net menghasilkan hasil yang baik, perbandingan Predicted Mask dengan True Mask pada kelas kucing yang mendapatkan skor IOU sebesar 0.933. Pada penerapan ini menggunakan batas bawah 0.5 pada IOU sehingga model ini dapat berjalan dengan baik