利用导电胶膜在基质辅助激光解吸/电离质谱成像中提高冷冻切片的信号强度

Q3 Physics and Astronomy Mass spectrometry Pub Date : 2023-01-01 DOI:10.5702/massspectrometry.a0137
Daisuke Saigusa, Ritsumi Saito, Komei Kawamoto, Akira Uruno, Kuniyuki Kano, Shuichi Shimma, Junken Aoki, Masayuki Yamamoto, Tadafumi Kawamoto
{"title":"利用导电胶膜在基质辅助激光解吸/电离质谱成像中提高冷冻切片的信号强度","authors":"Daisuke Saigusa, Ritsumi Saito, Komei Kawamoto, Akira Uruno, Kuniyuki Kano, Shuichi Shimma, Junken Aoki, Masayuki Yamamoto, Tadafumi Kawamoto","doi":"10.5702/massspectrometry.a0137","DOIUrl":null,"url":null,"abstract":"The matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) technique was used to obtain the molecular images of cryosections without labeling. Although MALDI-MSI has been widely used to detect small molecules from biological tissues, issues remain due to the technical process of cryosectioning and limited mass spectrometry parameters. The use of a conductive adhesive film is a unique method to obtain high-quality sections from cutting tissue, such as bone, muscle, adipose tissue, and whole body of mice or fish, and we have reported the utilization of the film for MALDI-MSI in previous. However, some signal of the small molecules using the conductive adhesive films was still lower than on the indium tin oxide (ITO) glass slide. Here, the sample preparation and analytical conditions for MALDI-MSI using an advanced conductive adhesive film were optimized to obtain strong signals from whole mice heads. The effects of tissue thickness and laser ionization power on signal intensity were verified using MALDI-MSI. The phospholipid signal intensity was measured for samples with three tissue thicknesses (5, 10, and 20 μm); compared to the signals from the samples on the ITO glass slides, the signals with conductive adhesive films exhibited significantly higher intensities when a laser with a higher range of power was used to ionize the small molecules. Thus, the technique using the advanced conductive adhesive film showed an improvement in MALDI-MSI analysis.","PeriodicalId":18243,"journal":{"name":"Mass spectrometry","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improving the Signal Intensity of Cryosections Using a Conductive Adhesive Film in Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry Imaging\",\"authors\":\"Daisuke Saigusa, Ritsumi Saito, Komei Kawamoto, Akira Uruno, Kuniyuki Kano, Shuichi Shimma, Junken Aoki, Masayuki Yamamoto, Tadafumi Kawamoto\",\"doi\":\"10.5702/massspectrometry.a0137\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) technique was used to obtain the molecular images of cryosections without labeling. Although MALDI-MSI has been widely used to detect small molecules from biological tissues, issues remain due to the technical process of cryosectioning and limited mass spectrometry parameters. The use of a conductive adhesive film is a unique method to obtain high-quality sections from cutting tissue, such as bone, muscle, adipose tissue, and whole body of mice or fish, and we have reported the utilization of the film for MALDI-MSI in previous. However, some signal of the small molecules using the conductive adhesive films was still lower than on the indium tin oxide (ITO) glass slide. Here, the sample preparation and analytical conditions for MALDI-MSI using an advanced conductive adhesive film were optimized to obtain strong signals from whole mice heads. The effects of tissue thickness and laser ionization power on signal intensity were verified using MALDI-MSI. The phospholipid signal intensity was measured for samples with three tissue thicknesses (5, 10, and 20 μm); compared to the signals from the samples on the ITO glass slides, the signals with conductive adhesive films exhibited significantly higher intensities when a laser with a higher range of power was used to ionize the small molecules. Thus, the technique using the advanced conductive adhesive film showed an improvement in MALDI-MSI analysis.\",\"PeriodicalId\":18243,\"journal\":{\"name\":\"Mass spectrometry\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mass spectrometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5702/massspectrometry.a0137\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mass spectrometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5702/massspectrometry.a0137","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0

摘要

采用基质辅助激光解吸/电离质谱成像(MALDI-MSI)技术获得冷冻切片的分子图像,无需标记。尽管MALDI-MSI已广泛用于检测生物组织中的小分子,但由于冷冻切片的技术过程和有限的质谱参数,问题仍然存在。使用导电胶膜是一种独特的方法,可以从切割组织中获得高质量的切片,如骨骼,肌肉,脂肪组织,以及小鼠或鱼类的全身,我们之前已经报道过将该膜用于MALDI-MSI。然而,使用导电胶膜的小分子的一些信号仍然低于在氧化铟锡(ITO)玻璃载玻片上。本文对MALDI-MSI的样品制备和分析条件进行了优化,利用先进的导电胶膜获得全鼠头部的强信号。利用MALDI-MSI验证了组织厚度和激光电离功率对信号强度的影响。测量3种组织厚度(5、10、20 μm)样品的磷脂信号强度;与ITO玻璃载玻片上样品的信号相比,当使用更高功率范围的激光电离小分子时,导电胶膜上的信号表现出明显更高的强度。因此,使用先进导电胶膜的技术在MALDI-MSI分析中表现出改善。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Improving the Signal Intensity of Cryosections Using a Conductive Adhesive Film in Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry Imaging
The matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) technique was used to obtain the molecular images of cryosections without labeling. Although MALDI-MSI has been widely used to detect small molecules from biological tissues, issues remain due to the technical process of cryosectioning and limited mass spectrometry parameters. The use of a conductive adhesive film is a unique method to obtain high-quality sections from cutting tissue, such as bone, muscle, adipose tissue, and whole body of mice or fish, and we have reported the utilization of the film for MALDI-MSI in previous. However, some signal of the small molecules using the conductive adhesive films was still lower than on the indium tin oxide (ITO) glass slide. Here, the sample preparation and analytical conditions for MALDI-MSI using an advanced conductive adhesive film were optimized to obtain strong signals from whole mice heads. The effects of tissue thickness and laser ionization power on signal intensity were verified using MALDI-MSI. The phospholipid signal intensity was measured for samples with three tissue thicknesses (5, 10, and 20 μm); compared to the signals from the samples on the ITO glass slides, the signals with conductive adhesive films exhibited significantly higher intensities when a laser with a higher range of power was used to ionize the small molecules. Thus, the technique using the advanced conductive adhesive film showed an improvement in MALDI-MSI analysis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mass spectrometry
Mass spectrometry Physics and Astronomy-Instrumentation
CiteScore
1.90
自引率
0.00%
发文量
3
期刊最新文献
A Method for High Throughput Free Fatty Acids Determination in a Small Section of Bovine Liver Tissue Using Supercritical Fluid Extraction Combined with Supercritical Fluid Chromatography-Medium Vacuum Chemical Ionization Mass Spectrometry. Comparison of Amine-Modified Polymeric Stationary Phases for Polar Metabolomic Analysis Based on Unified-Hydrophilic Interaction/Anion Exchange Liquid Chromatography/High-Resolution Mass Spectrometry (Unified-HILIC/AEX/HRMS). Mobilize a Proton to Transform the Collision-Induced Dissociation Spectral Pattern of a Cyclic Peptide. Recent Developments and Application of Mass Spectrometry Imaging in N-Glycosylation Studies: An Overview. Development of a Mass Spectrometry Imaging Method to Evaluate the Penetration of Moisturizing Components Coated on Surgical Gloves into Artificial Membranes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1