利用集合学习模型大规模提取中国黄土高原上的拦河坝和淤地

IF 7.3 1区 农林科学 Q1 ENVIRONMENTAL SCIENCES International Soil and Water Conservation Research Pub Date : 2023-10-11 DOI:10.1016/j.iswcr.2023.09.005
Yunfei Li , Jianlin Zhao , Ke Yuan , Gebeyehu Taye , Long Li
{"title":"利用集合学习模型大规模提取中国黄土高原上的拦河坝和淤地","authors":"Yunfei Li ,&nbsp;Jianlin Zhao ,&nbsp;Ke Yuan ,&nbsp;Gebeyehu Taye ,&nbsp;Long Li","doi":"10.1016/j.iswcr.2023.09.005","DOIUrl":null,"url":null,"abstract":"<div><p>Check dams have been widely constructed in the Chinese Loess Plateau and has played an important role in controlling soil loss during last 70 years. However, the large-scale and automatic mapping of the check dams and the resulting silted fields are lacking. In this study, we present a novel methodological framework to extract silted fields and to estimate the location of the check dams at a pixel level in the Wuding River catchment by remote sensing and ensemble learning models. The random under-sampling method and 23 features were used to train and validate three ensemble learning models, namely Random Forest, Extreme Gradient Boosting and EasyEnsemble, based on a large number of samples. The established optimal model was then applied to the whole study area to map check dams and silted fields. Our results indicate that the imbalance ratio of the samples has a significant impact on the performance of the models. Validation of the results on the testing set show that the F1-score of silted fields of three models is higher than 0.75 at the pixel level. Finally, we produced a map of silted fields and check dams at 10 m-spatial resolution by the optimal model with an accuracy of ca. 90% at the object level. The proposed framework can be used for the large-scale and high-precision mapping of check dams and silted fields, which is of great significance for the monitoring and management of the dynamics of check dams and the quantitative evaluation of their eco-environmental benefits.</p></div>","PeriodicalId":48622,"journal":{"name":"International Soil and Water Conservation Research","volume":"12 3","pages":"Pages 548-564"},"PeriodicalIF":7.3000,"publicationDate":"2023-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2095633923000862/pdfft?md5=91a8210b8b0c90dcdad056db29c99231&pid=1-s2.0-S2095633923000862-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Large-scale extraction of check dams and silted fields on the Chinese loess plateau using ensemble learning models\",\"authors\":\"Yunfei Li ,&nbsp;Jianlin Zhao ,&nbsp;Ke Yuan ,&nbsp;Gebeyehu Taye ,&nbsp;Long Li\",\"doi\":\"10.1016/j.iswcr.2023.09.005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Check dams have been widely constructed in the Chinese Loess Plateau and has played an important role in controlling soil loss during last 70 years. However, the large-scale and automatic mapping of the check dams and the resulting silted fields are lacking. In this study, we present a novel methodological framework to extract silted fields and to estimate the location of the check dams at a pixel level in the Wuding River catchment by remote sensing and ensemble learning models. The random under-sampling method and 23 features were used to train and validate three ensemble learning models, namely Random Forest, Extreme Gradient Boosting and EasyEnsemble, based on a large number of samples. The established optimal model was then applied to the whole study area to map check dams and silted fields. Our results indicate that the imbalance ratio of the samples has a significant impact on the performance of the models. Validation of the results on the testing set show that the F1-score of silted fields of three models is higher than 0.75 at the pixel level. Finally, we produced a map of silted fields and check dams at 10 m-spatial resolution by the optimal model with an accuracy of ca. 90% at the object level. The proposed framework can be used for the large-scale and high-precision mapping of check dams and silted fields, which is of great significance for the monitoring and management of the dynamics of check dams and the quantitative evaluation of their eco-environmental benefits.</p></div>\",\"PeriodicalId\":48622,\"journal\":{\"name\":\"International Soil and Water Conservation Research\",\"volume\":\"12 3\",\"pages\":\"Pages 548-564\"},\"PeriodicalIF\":7.3000,\"publicationDate\":\"2023-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2095633923000862/pdfft?md5=91a8210b8b0c90dcdad056db29c99231&pid=1-s2.0-S2095633923000862-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Soil and Water Conservation Research\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2095633923000862\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Soil and Water Conservation Research","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2095633923000862","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

过去 70 年间,中国黄土高原广泛修建了拦水坝,并在控制土壤流失方面发挥了重要作用。然而,目前还缺乏对拦河坝及其淤积田的大规模自动测绘。在本研究中,我们提出了一个新颖的方法框架,通过遥感和集合学习模型提取武定河流域的淤积田,并在像素级估算拦河坝的位置。在大量样本的基础上,使用随机欠采样方法和 23 个特征来训练和验证三个集合学习模型,即随机森林、极端梯度提升和 EasyEnsemble。然后将建立的最优模型应用于整个研究区域,以绘制检查坝和淤田图。结果表明,样本的不平衡率对模型的性能有显著影响。测试集的验证结果表明,在像素级别上,三种模型的淤田 F1 分数均高于 0.75。最后,我们利用最优模型绘制了 10 米空间分辨率的淤田和检查坝地图,在对象层面的准确率约为 90%。所提出的框架可用于大比例尺、高精度的拦河坝和淤地制图,这对拦河坝动态监测与管理及其生态环境效益的定量评估具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Large-scale extraction of check dams and silted fields on the Chinese loess plateau using ensemble learning models

Check dams have been widely constructed in the Chinese Loess Plateau and has played an important role in controlling soil loss during last 70 years. However, the large-scale and automatic mapping of the check dams and the resulting silted fields are lacking. In this study, we present a novel methodological framework to extract silted fields and to estimate the location of the check dams at a pixel level in the Wuding River catchment by remote sensing and ensemble learning models. The random under-sampling method and 23 features were used to train and validate three ensemble learning models, namely Random Forest, Extreme Gradient Boosting and EasyEnsemble, based on a large number of samples. The established optimal model was then applied to the whole study area to map check dams and silted fields. Our results indicate that the imbalance ratio of the samples has a significant impact on the performance of the models. Validation of the results on the testing set show that the F1-score of silted fields of three models is higher than 0.75 at the pixel level. Finally, we produced a map of silted fields and check dams at 10 m-spatial resolution by the optimal model with an accuracy of ca. 90% at the object level. The proposed framework can be used for the large-scale and high-precision mapping of check dams and silted fields, which is of great significance for the monitoring and management of the dynamics of check dams and the quantitative evaluation of their eco-environmental benefits.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Soil and Water Conservation Research
International Soil and Water Conservation Research Agricultural and Biological Sciences-Agronomy and Crop Science
CiteScore
12.00
自引率
3.10%
发文量
171
审稿时长
49 days
期刊介绍: The International Soil and Water Conservation Research (ISWCR), the official journal of World Association of Soil and Water Conservation (WASWAC) http://www.waswac.org, is a multidisciplinary journal of soil and water conservation research, practice, policy, and perspectives. It aims to disseminate new knowledge and promote the practice of soil and water conservation. The scope of International Soil and Water Conservation Research includes research, strategies, and technologies for prediction, prevention, and protection of soil and water resources. It deals with identification, characterization, and modeling; dynamic monitoring and evaluation; assessment and management of conservation practice and creation and implementation of quality standards. Examples of appropriate topical areas include (but are not limited to): • Conservation models, tools, and technologies • Conservation agricultural • Soil health resources, indicators, assessment, and management • Land degradation • Sustainable development • Soil erosion and its control • Soil erosion processes • Water resources assessment and management • Watershed management • Soil erosion models • Literature review on topics related soil and water conservation research
期刊最新文献
Editorial Board Utilizing geodetectors to identify conditioning factors for gully erosion risk in the black soil region of northeast China Automated quantification of contouring as support practice for improved soil erosion estimation considering ridges Editorial Board Three-dimensional spatiotemporal variation of soil organic carbon and its influencing factors at the basin scale
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1