Lopez Reyes Rigoberto, Min-Soo Ghim, Young-Sam Cho
{"title":"不同加性制造晶格结构的渐近膨胀均质化结果与实验结果的比较分析","authors":"Lopez Reyes Rigoberto, Min-Soo Ghim, Young-Sam Cho","doi":"10.7736/jkspe.023.071","DOIUrl":null,"url":null,"abstract":"Recently, the demand for lightweight open-pore lattice structures with specific stiffness is increasing in many fields, such as the aeronautical, automotive, mechanical and bone tissue engineering sectors. For each concrete application, there is a need to predict its mechanical properties precisely and efficiently. There are several methods used to analyze the mechanical properties of lattice structures. Among them, the asymptotic expansion homogenization method is a more advantageous approach over the experimental, theoretical, and finite element methods, because it handles some of their limitations such as the time-consuming process, size effect, and the high amount of computational resources needed. Therefore, in this work, we use the asymptotic expansion homogenization method to perform a systematic parametric study to calculate the effective stiffness of different open-pore lattice structures. In addition, the designed models were fabricated using an SLA 3D printer, and the effective stiffness of the fabricated specimens was tested via UTM experiment to validate the numerical results computed by the asymptotic expansion homogenization method. Consequently, it was proved that this method is precise and effective for predicting the mechanical properties of lattice structures.","PeriodicalId":37663,"journal":{"name":"Journal of the Korean Society for Precision Engineering","volume":"65 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Comparative Analysis of AEH (Asymptotic Expansion Homogenization) Results and Experimental Findings of Various Additive Manufactured Lattice Structures\",\"authors\":\"Lopez Reyes Rigoberto, Min-Soo Ghim, Young-Sam Cho\",\"doi\":\"10.7736/jkspe.023.071\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recently, the demand for lightweight open-pore lattice structures with specific stiffness is increasing in many fields, such as the aeronautical, automotive, mechanical and bone tissue engineering sectors. For each concrete application, there is a need to predict its mechanical properties precisely and efficiently. There are several methods used to analyze the mechanical properties of lattice structures. Among them, the asymptotic expansion homogenization method is a more advantageous approach over the experimental, theoretical, and finite element methods, because it handles some of their limitations such as the time-consuming process, size effect, and the high amount of computational resources needed. Therefore, in this work, we use the asymptotic expansion homogenization method to perform a systematic parametric study to calculate the effective stiffness of different open-pore lattice structures. In addition, the designed models were fabricated using an SLA 3D printer, and the effective stiffness of the fabricated specimens was tested via UTM experiment to validate the numerical results computed by the asymptotic expansion homogenization method. Consequently, it was proved that this method is precise and effective for predicting the mechanical properties of lattice structures.\",\"PeriodicalId\":37663,\"journal\":{\"name\":\"Journal of the Korean Society for Precision Engineering\",\"volume\":\"65 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Korean Society for Precision Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7736/jkspe.023.071\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Korean Society for Precision Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7736/jkspe.023.071","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
A Comparative Analysis of AEH (Asymptotic Expansion Homogenization) Results and Experimental Findings of Various Additive Manufactured Lattice Structures
Recently, the demand for lightweight open-pore lattice structures with specific stiffness is increasing in many fields, such as the aeronautical, automotive, mechanical and bone tissue engineering sectors. For each concrete application, there is a need to predict its mechanical properties precisely and efficiently. There are several methods used to analyze the mechanical properties of lattice structures. Among them, the asymptotic expansion homogenization method is a more advantageous approach over the experimental, theoretical, and finite element methods, because it handles some of their limitations such as the time-consuming process, size effect, and the high amount of computational resources needed. Therefore, in this work, we use the asymptotic expansion homogenization method to perform a systematic parametric study to calculate the effective stiffness of different open-pore lattice structures. In addition, the designed models were fabricated using an SLA 3D printer, and the effective stiffness of the fabricated specimens was tested via UTM experiment to validate the numerical results computed by the asymptotic expansion homogenization method. Consequently, it was proved that this method is precise and effective for predicting the mechanical properties of lattice structures.
期刊介绍:
Journal of the Korean Society for Precision Engineering (JKSPE) is devoted to publishing original research articles with high ethical standard on all aspects of precision engineering and manufacturing. Specifically, the journal focuses on articles related to improving the precision of machines and manufacturing processes through implementation of creative solutions that stem from advanced research using novel experimental methods, predictive modeling techniques, and rigorous analyses based on mechanical engineering or multidisciplinary approach. The expected outcomes of the knowledge disseminated from JKSPE are enhanced reliability, better motion precision, higher measurement accuracy, and sufficient reliability of precision systems. The various topics covered by JKSPE include: Precision Manufacturing processes, Precision Measurements, Robotics and Automation / Control, Smart Manufacturing System, Design and Materials, Machine Tools, Nano/Micro Technology, Biomechanical Engineering, Additive Manufacturing System, Green Manufacturing Technology.