微分图形博弈共识跟踪的分布式极小策略:一种无模型方法

IF 1.9 Q3 COMPUTER SCIENCE, CYBERNETICS IEEE Systems Man and Cybernetics Magazine Pub Date : 2023-10-01 DOI:10.1109/msmc.2023.3282774
Yan Zhou, Jialing Zhou, Guanghui Wen, Minggang Gan, Tao Yang
{"title":"微分图形博弈共识跟踪的分布式极小策略:一种无模型方法","authors":"Yan Zhou, Jialing Zhou, Guanghui Wen, Minggang Gan, Tao Yang","doi":"10.1109/msmc.2023.3282774","DOIUrl":null,"url":null,"abstract":"This article focuses on the design of distributed minmax strategies for multiagent consensus tracking control problems with completely unknown dynamics in the presence of external disturbances or attacks. Each agent obtains its distributed minmax strategy by solving a multiagent zero-sum differential graphical game, which involves both nonadversarial and adversarial behaviors. Solving such a game is equivalent to solving a game algebraic Riccati equation (GARE). By making slight assumptions concerning performance matrices, <inline-formula xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><tex-math notation=\"LaTeX\">${\\cal{L}}_{2}$</tex-math></inline-formula> stability and asymptotic stability of the closed-loop consensus error systems are strictly proven. Furthermore, inspired by data-driven off-policy reinforcement learning (RL), a model-free policy iteration (PI) algorithm is presented for each follower to generate the minmax strategy. Finally, simulations are performed to demonstrate the effectiveness of the proposed theoretical results.","PeriodicalId":43649,"journal":{"name":"IEEE Systems Man and Cybernetics Magazine","volume":"59 1","pages":"0"},"PeriodicalIF":1.9000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Distributed Minmax Strategy for Consensus Tracking in Differential Graphical Games: A Model-Free Approach\",\"authors\":\"Yan Zhou, Jialing Zhou, Guanghui Wen, Minggang Gan, Tao Yang\",\"doi\":\"10.1109/msmc.2023.3282774\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article focuses on the design of distributed minmax strategies for multiagent consensus tracking control problems with completely unknown dynamics in the presence of external disturbances or attacks. Each agent obtains its distributed minmax strategy by solving a multiagent zero-sum differential graphical game, which involves both nonadversarial and adversarial behaviors. Solving such a game is equivalent to solving a game algebraic Riccati equation (GARE). By making slight assumptions concerning performance matrices, <inline-formula xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><tex-math notation=\\\"LaTeX\\\">${\\\\cal{L}}_{2}$</tex-math></inline-formula> stability and asymptotic stability of the closed-loop consensus error systems are strictly proven. Furthermore, inspired by data-driven off-policy reinforcement learning (RL), a model-free policy iteration (PI) algorithm is presented for each follower to generate the minmax strategy. Finally, simulations are performed to demonstrate the effectiveness of the proposed theoretical results.\",\"PeriodicalId\":43649,\"journal\":{\"name\":\"IEEE Systems Man and Cybernetics Magazine\",\"volume\":\"59 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Systems Man and Cybernetics Magazine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/msmc.2023.3282774\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, CYBERNETICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Systems Man and Cybernetics Magazine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/msmc.2023.3282774","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, CYBERNETICS","Score":null,"Total":0}
引用次数: 0

摘要

本文主要研究在存在外部干扰或攻击的情况下,具有完全未知动态的多智能体共识跟踪控制问题的分布式最小最大策略的设计。每个智能体通过求解一个包含非对抗行为和对抗行为的多智能体零和微分图形博弈,得到其分布式最小最大策略。求解这样的博弈相当于求解博弈代数里卡蒂方程(GARE)。通过对性能矩阵稍作假设,严格证明了闭环一致误差系统的${\cal{L}}_{2}$稳定性和渐近稳定性。此外,受数据驱动的离策略强化学习(RL)的启发,提出了一种无模型策略迭代(PI)算法,用于生成最小最大策略。最后通过仿真验证了所提理论结果的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Distributed Minmax Strategy for Consensus Tracking in Differential Graphical Games: A Model-Free Approach
This article focuses on the design of distributed minmax strategies for multiagent consensus tracking control problems with completely unknown dynamics in the presence of external disturbances or attacks. Each agent obtains its distributed minmax strategy by solving a multiagent zero-sum differential graphical game, which involves both nonadversarial and adversarial behaviors. Solving such a game is equivalent to solving a game algebraic Riccati equation (GARE). By making slight assumptions concerning performance matrices, ${\cal{L}}_{2}$ stability and asymptotic stability of the closed-loop consensus error systems are strictly proven. Furthermore, inspired by data-driven off-policy reinforcement learning (RL), a model-free policy iteration (PI) algorithm is presented for each follower to generate the minmax strategy. Finally, simulations are performed to demonstrate the effectiveness of the proposed theoretical results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Systems Man and Cybernetics Magazine
IEEE Systems Man and Cybernetics Magazine COMPUTER SCIENCE, CYBERNETICS-
自引率
6.20%
发文量
60
期刊最新文献
Report of the First IEEE International Summer School (Online) on Environments—Classes, Agents, Roles, Groups, and Objects and Its Applications [Conference Reports] Saeid Nahavandi: Academic, Innovator, Technopreneur, and Thought Leader [Society News] IEEE Foundation IEEE Feedback Artificial Intelligence for the Social Internet of Things: Analysis and Modeling Using Collaborative Technologies [Special Section Editorial]
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1