基于重构误差概率密度函数的海上导航异常检测

IF 2.1 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Journal of Intelligent Systems Pub Date : 2023-01-01 DOI:10.1515/jisys-2022-0270
Zahra Sadeghi, Stan Matwin
{"title":"基于重构误差概率密度函数的海上导航异常检测","authors":"Zahra Sadeghi, Stan Matwin","doi":"10.1515/jisys-2022-0270","DOIUrl":null,"url":null,"abstract":"Abstract Anomaly detection is a fundamental problem in data science and is one of the highly studied topics in machine learning. This problem has been addressed in different contexts and domains. This article investigates anomalous data within time series data in the maritime sector. Since there is no annotated dataset for this purpose, in this study, we apply an unsupervised approach. Our method benefits from the unsupervised learning feature of autoencoders. We utilize the reconstruction error as a signal for anomaly detection. For this purpose, we estimate the probability density function of the reconstruction error and find different levels of abnormality based on statistical attributes of the density of error. Our results demonstrate the effectiveness of this approach for localizing irregular patterns in the trajectory of vessel movements.","PeriodicalId":46139,"journal":{"name":"Journal of Intelligent Systems","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Anomaly detection for maritime navigation based on probability density function of error of reconstruction\",\"authors\":\"Zahra Sadeghi, Stan Matwin\",\"doi\":\"10.1515/jisys-2022-0270\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Anomaly detection is a fundamental problem in data science and is one of the highly studied topics in machine learning. This problem has been addressed in different contexts and domains. This article investigates anomalous data within time series data in the maritime sector. Since there is no annotated dataset for this purpose, in this study, we apply an unsupervised approach. Our method benefits from the unsupervised learning feature of autoencoders. We utilize the reconstruction error as a signal for anomaly detection. For this purpose, we estimate the probability density function of the reconstruction error and find different levels of abnormality based on statistical attributes of the density of error. Our results demonstrate the effectiveness of this approach for localizing irregular patterns in the trajectory of vessel movements.\",\"PeriodicalId\":46139,\"journal\":{\"name\":\"Journal of Intelligent Systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Intelligent Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/jisys-2022-0270\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Intelligent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/jisys-2022-0270","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

异常检测是数据科学的一个基本问题,也是机器学习领域研究的热点之一。这个问题已经在不同的上下文中和领域得到了解决。本文研究了海事部门时间序列数据中的异常数据。由于没有用于此目的的注释数据集,因此在本研究中,我们采用无监督方法。我们的方法得益于自编码器的无监督学习特性。我们利用重构误差作为异常检测的信号。为此,我们估计重构误差的概率密度函数,并根据误差密度的统计属性找到不同程度的异常。我们的结果证明了这种方法在船舶运动轨迹中定位不规则模式的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Anomaly detection for maritime navigation based on probability density function of error of reconstruction
Abstract Anomaly detection is a fundamental problem in data science and is one of the highly studied topics in machine learning. This problem has been addressed in different contexts and domains. This article investigates anomalous data within time series data in the maritime sector. Since there is no annotated dataset for this purpose, in this study, we apply an unsupervised approach. Our method benefits from the unsupervised learning feature of autoencoders. We utilize the reconstruction error as a signal for anomaly detection. For this purpose, we estimate the probability density function of the reconstruction error and find different levels of abnormality based on statistical attributes of the density of error. Our results demonstrate the effectiveness of this approach for localizing irregular patterns in the trajectory of vessel movements.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Intelligent Systems
Journal of Intelligent Systems COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE-
CiteScore
5.90
自引率
3.30%
发文量
77
审稿时长
51 weeks
期刊介绍: The Journal of Intelligent Systems aims to provide research and review papers, as well as Brief Communications at an interdisciplinary level, with the field of intelligent systems providing the focal point. This field includes areas like artificial intelligence, models and computational theories of human cognition, perception and motivation; brain models, artificial neural nets and neural computing. It covers contributions from the social, human and computer sciences to the analysis and application of information technology.
期刊最新文献
Periodic analysis of scenic spot passenger flow based on combination neural network prediction model Research on the construction and reform path of online and offline mixed English teaching model in the internet era Online English writing teaching method that enhances teacher–student interaction Neural network big data fusion in remote sensing image processing technology Improved rapidly exploring random tree using salp swarm algorithm
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1